Skip to main content
Log in

Synthesis, characterization and photoluminescence of Dy3+-doped MgZnO nanophosphors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

MgZnO and MgZnO: Dy3+ (x = 0.0025–0.025) nanoparticles were synthesized by the combustion method. The as-synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), UV–visible spectroscopy (UV–Vis) and photoluminescence (PL) techniques. XRD studies confirmed the presence of wurtzite hexagonal structure of all the samples with the crystallite size in the range of 30–50 nm range. The XRD results were also in good agreement with the TEM results. The EDS spectra confirmed the presence of all the elements in the samples prepared. UV–Vis measurements indicated variation in bandgap values with increasing doping concentration. PL spectrum showed enhanced blue emission and tunability of blue emission could be observed with variation in dopant concentration. Excellent emission intensity of the phosphor was suitable for application in display devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.R. Reddy, P. Prathap, N. Revathi, A.S.N. Reddy, R.W. Miles, Mg-composition induced effects on the physical behavior of sprayed Zn1−x MgxO films. Thin Solid Films 518(4), 1275–1278 (2009)

    Article  ADS  Google Scholar 

  2. T. Gruber, C. Kirchner, R. Kling, F. Reuss, A. Waag, ZnMgO epilayers and ZnO–ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region. Appl. Phys. 84(26), 5359–5361 (2004)

    ADS  Google Scholar 

  3. F.D. Auret, S.A. Goodman, M. Hayes, M.J. Legodi, H.A. Van Laarhoven, D.C. Look, Electrical characterization of 1.8 MeV proton-bombarded ZnO. Appl. Phys. Lett. 79(19), 3074–3076 (2001)

    Article  ADS  Google Scholar 

  4. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, Mgx Zn 1–x O as a II–VI wide gap semiconductor alloy. Appl. Phys. Lett. 72(19), 2466–2468 (1998)

    Article  ADS  Google Scholar 

  5. L. Yang, X. Yu, S. Yang, C. Zhou, P. Zhou, W. Gao, P. Ye, Preparation and luminescence properties of LED conversion novel phosphors SrZnO2: Sm. Mater. Lett. 62, 907–910 (2008)

    Article  Google Scholar 

  6. M. Wang, E.J. Kim, S. Kim, J.S. Shung, I.K. Yoo, E.W. Shin, S.H. Hahn, C. Park, Optical and structural properties of sol–gel prepared MgZnO alloy thin films. Thin Solid Films 516(6), 1124–1129 (2008)

    Article  ADS  Google Scholar 

  7. M.D. Neumann, C. Cobet, N. Esser, B. Laumer, T.A. Wassner, M. Eickhoff, M. Feneberg, R. Goldhahn, Optical properties of MgZnO alloys: excitons and exciton-phonon complexes. J. Appl. Phys. 110(1), 013520 (2011)

    Article  ADS  Google Scholar 

  8. J. Kuang, Y. Liu, White-emitting long-lasting phosphor Sr2SiO4: Dy3+. Curr. Chem. Lett. 34(4), 598–599 (2005)

    Article  Google Scholar 

  9. F. Gu, S.F. Wang, M.K. Lü, W.G. Zou, G.J. Zhou, D. Xu, D.R. Yuan, Combustion synthesis and luminescence properties of Dy3 + -doped MgO nanocrystals. J. Cryst. Growth 260(3–4), 507–510 (2004)

    Article  ADS  Google Scholar 

  10. C. Jayachandraiah, K.S. Kumar, G. Krishnaiah, N.M. Rao, Influence of Dy dopant on structural and photoluminescence of Dy-doped ZnO nanoparticles. J. Alloys. Compd. 623, 248–254 (2015)

    Article  Google Scholar 

  11. K. Gopinath, J. Seo, Influence of Mg doping on the structural, morphological, optical, thermal, and visible-light responsive antibacterial properties of ZnO nanoparticles synthesized via co-precipitation. Mat. Sci. Eng. C. 98, 717–725 (2019)

    Article  Google Scholar 

  12. S. Singh, G.R. Dillip, S. Vyas, M.R. Hasan, I.K. Park, P. Chakrabarti, S.H. Park, Fabrication and characterization of hydrothermally grown MgZnO nanorod films for Schottky diode applications. Microsyst. Technol. 23, 39–46 (2017)

    Article  Google Scholar 

  13. K. Chongsri, S. Boonruang, W. Techitdheera, W. Pecharapa, N-doped MgZnO alloy thin film prepared by sol–gel method. Mater. Lett. 65, 1842–1845 (2011)

    Article  Google Scholar 

  14. U. Holzwarth, N. Gibson, The Scherrer equation versus the ‘Debye-Scherrer equation. Nat. Nanotechnol. 6, 534 (2011)

    Article  ADS  Google Scholar 

  15. R. Naik, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, H.P. Nagaswarupa, H.B. Premkumar, Low temperature synthesis and photoluminescence properties of red emitting Mg2SiO4: Eu3 + nanophosphor for near UV light emitting diodes. Sensor. Actuator B- Chem. 195, 140–149 (2014)

    Article  Google Scholar 

  16. G.K. Williamson, W.H. Hall, X-Ray line broadening from filed aluminium and wolfram. Acta Metal. 1(1), 22–31 (1953)

    Article  Google Scholar 

  17. P.V. Devaraja, D.N. Avadhani, H. Nagabhushana, S.C. Prasantha, S.C. Sharma, B.M. Nagabhushna, H.P. Nagaswarupa, B.D. Prasad, MgO: Dy3+ nanophosphor: self ignition route, characterization and its photoluminescence properties. Mater. Charact. 97, 27–36 (2014)

    Article  Google Scholar 

  18. R.R. Reeber, Lattice parameters of ZnO from 4.2 to 296K. J. Appl. Phys. 41, 5063–5066 (1970)

    Article  ADS  Google Scholar 

  19. V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theoret. Appl. Phys. 6, 6 (2012)

    Article  ADS  Google Scholar 

  20. Y. Sawai, K. Hazu, S.F. Chichibu, Surface stoichiometry and activity control for atomically smooth low dislocation density ZnO and pseudomorphic MgZnO epitaxy on a Zn-polar ZnO substrate by the helicon-wave-excited-plasma sputtering epitaxy method. J. Appl. Phys. 108, 063541 (2010)

    Article  ADS  Google Scholar 

  21. L. Lin, W. Lin, J.L. Xie, Y.X. Zhu, B.Y. Zhao, Y.C. Xie, Photocatalytic properties of phosphor-doped titania nanoparticles. Appl. Catal. B Environ. 75(1–2), 52–58 (2007)

    Article  Google Scholar 

  22. S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt. Mater. 34(11), 1946–1953 (2012)

    Article  ADS  Google Scholar 

  23. A. Tumuluri, K. Lakshun, K.C. Naidu, James Raju, Band gap determination using Tauc’s plot for LiNbO3 thin films. Int. J. Chem. Tech. Res 6, 3353–3356 (2014)

    Google Scholar 

  24. K.T.R. Reddy, P. Prathap, N. Revathi, A.S.N. Reddy, R.W. Miles, Mg—composition induced effects on the physical behaviour of sprayed Zn1-x Mgx O films. Thin Solid Films 158, 1275–1278 (2009)

    Article  ADS  Google Scholar 

  25. N. Shakti, P.S. Gupta, Structural and optical properties of sol-gel prepared ZnO thin film. Appl. Phys. Res. 2(1), 19 (2010)

    Article  Google Scholar 

  26. Y. Caglar, M. Caglar, S. Ilican, Microstructural, optical and electrical studies on sol gel derived ZnO and ZnO: Al films. Curr. Appl. Phys. 12(3), 963–968 (2012)

    Article  ADS  Google Scholar 

  27. R.K. Zheng, H. Liu, X.X. Zhang, V.A.L. Roy, A.B. Djurišić, Exchange bias and the origin of magnetism in Mn-doped ZnO tetrapods. Appl. Phys. Lett. 85, 2589–2591 (2004)

    Article  ADS  Google Scholar 

  28. B.Y. Geng, G.Z. Wang, Z. Jiang, T. Xie, S.H. Sun, G.W. Meng, L.D. Zhang, Synthesis and photoluminescence of Dy doped ZnO nanowires. Appl. Phys. Lett. 82, 4791 (2003)

    Article  ADS  Google Scholar 

  29. F. Gu, S.F. Wang, M.K. Lü, W.G. Zou, G.J. Zhou, D. Xu, D.R. Yuan, Combustion synthesis and luminescence properties of Dy3+-doped MgO nanocrystals. J. Cryst. Growth 260, 507–510 (2004)

    Article  ADS  Google Scholar 

  30. G.S. Wu, Y.L. Zhuang, Z.Q. Lin, X.Y. Yuan, T. Xie, L.D. Zhang, Synthesis and photoluminescence of Dy-doped ZnO nanowires. Phys. E 31, 5–8 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Kamni (corresponding author) is thankful to the Nano Research Laboratory at School of Physics, SMVDU, for providing us the facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamni Pathania.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, P., Vashishtha, P., Gupta, G. et al. Synthesis, characterization and photoluminescence of Dy3+-doped MgZnO nanophosphors. Appl. Phys. A 126, 593 (2020). https://doi.org/10.1007/s00339-020-03783-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03783-0

Keywords

Navigation