Skip to main content
Log in

Surface cleaning process for plasma-etched SiC wafer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we explored a method to remove the contamination and impurities left on SiC surface after plasma-etched process. The stubborn contamination is resulting from fluorochemical caused by plasma-etched process, residue left after stripping Ni metal mask, Ni–O compounds formed by the metal mask with SiC Si surface oxide film and carbon-containing contamination introduced by the process environment. By adding a layer of SiO2 mask between SiC and the original metal mask together with ultrasonic cleaning and oxygen plasma cleaning process, the sample surface roughness was effectively reduced from 1.090 to 0.055 nm. Moreover, this method supplies a valuable reference for solving the problem of surface contamination caused by plasma etched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Dhar, S. Wang, J.R. Williams et al., Interface passivation for silicon dioxide layers on silicon carbide. MRS Bull. 30(04), 288–292 (2005)

    Article  Google Scholar 

  2. H.P. Phan, H.H. Cheng, T.K. Dinh et al., Single crystalline 3C-SiC anodically bonded onto glass: an excellent platform for high temperature electronics and bio applications. ACS Appl. Mater. Interfaces. 9, 27365–27371 (2017)

    Article  Google Scholar 

  3. P. Diaz Reigosa, H. Luo, G.F. Iannuzzo, Implications of ageing through power cycling on the short circuit robustness of 1.2-kV SiC MOSFETs. IEEE Trans. Power Electron. 34, 11182–11190 (2019)

    Article  ADS  Google Scholar 

  4. M.T. Soo, K.Y. Cheong, A.F.M. Noor, Advances of SiC-based MOS capacitor hydrogen sensors for harsh environment applications. Sens. Actuators B: Chem. 151(1), 39–55 (2010)

    Article  Google Scholar 

  5. H. Ahmad, S. Yvon, S. Mohamad, Electronics and packaging intended for emerging harsh environment applications. A review. IEEE Trans Very Large Scale Integr (VLSI) Syst 26(10), 2085–2098 (2018)

    Article  Google Scholar 

  6. N.G. Wright, A.B. Horsfall, K. Vassilevski, Prospects for SiC electronics and sensors. Mater. Today 11(1–2), 16–21 (2008)

    Article  Google Scholar 

  7. N.G. Wright, A.B. Horsfall, SiC sensors: a review. J. Phys. D Appl. Phys. 40(20), 6345 (2007)

    Article  ADS  Google Scholar 

  8. D.J. Young, J. Du, C.A. Zorman et al., High-temperature single-crystal 3C-SiC capacitive pressure sensor. IEEE Sens. J. 4(4), 464–470 (2004)

    Article  ADS  Google Scholar 

  9. R.C. Clarke, J.W. Palmour, SiC microwave power technologies. Proc IEEE 90(6), 987–992 (2002)

    Article  Google Scholar 

  10. R. Joyce, K. Singh, S. Varghese et al., Effective cleaning process and its influence on surface roughness in anodic bonding for semiconductor device packaging. Mater. Sci. Semicond. Process. 31, 84–93 (2015)

    Article  Google Scholar 

  11. F. Mu, T. Suga, M. Fujino et al., SiC wafer bonding by modified suface activated bonding method. 2014 4th IEEE international workshop on low temperature bonding for 3D integration (LTB-3D). IEEE 2014, 55–55 (2014)

    Google Scholar 

  12. H. Mishima, T. Yasui, T. Mizuniwa et al., Particle-free wafer cleaning and plasmaing technology. IEEE Trans. Semicond. Manuf. 2(3), 69–75 (1989)

    Article  Google Scholar 

  13. M. Itano, F.W. Kern, M. Miyashita et al., Particle removal from silicon wafer surface in wet cleaning process. IEEE Trans. Semicond. Manuf. 6(3), 258–267 (1993)

    Article  Google Scholar 

  14. H. Takagi, R. Maeda, T.R. Chung et al., Effect of surface roughness on room-temperature wafer bonding by Ar beam surface activation. Jpn. J. Appl. Phys. 37(7), 4197–4203 (1998)

    Article  ADS  Google Scholar 

  15. D.J. Morrison, A.J. Pidduck, V. Moore et al., Surface preparation for Schottky metal—4H-SiC contacts formed on plasma-etched SiC. Semicond. Sci. Technol. 15(12), 1107–1114 (2000)

    Article  ADS  Google Scholar 

  16. H. Seo, S.B. Kim, J. Song et al., Low temperature remote plasma cleaning of the fluorocarbon and polymerized residues formed during contact hole dry etching. J Vacuum Sci Technol B (Microelectronics and Nanometer Structures) 20(4), 1548–1555 (2002)

    Article  ADS  Google Scholar 

  17. H. Aida, T. Doi, H. Takeda et al., Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials. Curr Appl Phys 12, 41–46 (2012)

    Article  Google Scholar 

  18. W. Kern, ChemInform abstract: the evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 137(6), 1887–1892 (1990)

    Article  ADS  Google Scholar 

  19. N.J. Dartnell, M.C. Flowers, R. Greef et al., Reactive ion etching of silicon carbide (SixC1−x). Vacuum 46(4), 349–355 (1995)

    Article  ADS  Google Scholar 

  20. P. Chabert, G. Cunge, J.P. Booth et al., Reactive ion etching of SiC in SF6 gas: detection of CF, CF2 and SiF2 etch products. Appl. Phys. Lett. 79(7), 916–918 (2001)

    Article  ADS  Google Scholar 

  21. H. Ito, T. Kuwahara, K. Kawaguchi et al., Tight-binding quantum chemical molecular dynamics simulations for the elucidation of chemical reaction dynamics in SiC etching with SF6/O2 plasma. Phys Chem Chem Phys 18, 7808–7819 (2016)

    Article  Google Scholar 

  22. C. Cardinaud, A. Rhounna, G. Turban et al., Contamination of silicon surfaces exposed to CHF3 plasmas. J. Electrochem. Soc. 135(6), 1472–1477 (1988)

    Article  ADS  Google Scholar 

  23. Z. Ni Mekhalif, J. Riga, J.J. Pireaux et al., Self-assembled monolayers of n-dodecanethiol on electrochemically modified polycrystalline nickel surfaces. Langmuir 13(8), 2285–2290 (1997)

    Article  Google Scholar 

  24. D. Sridhar, J.L. Meunier, S. Omanovic, Directly grown carbon nano-fibers on nickel foam as binder-free long-lasting supercapacitor electrodes. Mater Chem Phys 223, 434–440 (2019)

    Article  Google Scholar 

  25. M.B. Ni-F Chan-Park, J. Gao, A.H.L. Koo, Surface characterization of nickel alloy plasma-treated by O2/CF4 mixture. J Adhesion Sci Technol 17(15), 1979–2004 (2003)

    Article  Google Scholar 

  26. H. Liang, J. Lin, H. Jia et al., Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor. J. Power Sources 78, 248–254 (2018)

    Article  Google Scholar 

  27. M.R. Alexander, R.D. Short, F.R. Jones et al., A study of HMDSO/O2 plasma deposits using a high-sensitivity and -energy resolution XPS instrument: curve fitting of the Si2p core level. Appl. Surf. Sci. 137, 179–183 (1999)

    Article  ADS  Google Scholar 

  28. S. Kennou, S. Ladas, E.C. Paloura et al., Characterization of ex-situ hydrogenated amorphous SiC thin films by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 90(3), 283–287 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Key Research and Development Project [Grant Number 2018YFB2002700] and Science Foundation of the Chinese Academy of Science [Grant Number 201510280052 XMXX201200019933].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiping Shang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Shang, H., Wang, D. et al. Surface cleaning process for plasma-etched SiC wafer. Appl. Phys. A 126, 617 (2020). https://doi.org/10.1007/s00339-020-03774-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03774-1

Keywords

Navigation