Skip to main content

Advertisement

Log in

Exploring the role of defects on diverse properties of Cr-substituted ZnS nanostructures for photocatalytic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pristine ZnS nanospheres and 4% Cr-substituted ZnS nanocubes were synthesized by a one-step hydrothermal method. The effect of cetyltrimethyl ammonium bromide (CTAB) cationic surfactant on morphology of as-synthesized samples was scrutinized. Diverse physical properties of as-synthesized materials for photocatalytic activity were investigated by XRD, FT-IR, UV–Vis, fluorescence spectroscopy, SEM, EDS, TG–DTA and I–V characteristics. It was explicitly observed that Cr-substituted ZnS nanocubes have higher efficiency than pristine ZnS nanospheres. Cr-substituted ZnS nanocubes are more photosensitive than pristine ZnS nanospheres owing to its lower energy band gap, smaller particle size, lattice strain and single crystalline phase. A variation in photocatalytic activity attributes to physical properties which endorses the degradation of MB, MO and MO–MB miscellaneous azo dye solution effectively. It was explicitly fortified that 4% Cr-doped ZnS nanocubes are better photocatalyst than pristine ZnS nanospheres for photocatalytic dye degradation application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Lonkar, V. Pillai, S. Alhassan, Sci. Rep. 8, 13401 (2018)

    ADS  Google Scholar 

  2. K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 44, 8269 (2005)

    ADS  Google Scholar 

  3. N. Raskar, D. Dake, V. Mane, E. Stathatos, U. Deshpande, B. Dole, J. Mater. Sci. Mater. Electron. 30, 10886 (2019)

    Google Scholar 

  4. Q. Zhao, Y. Xie, Z. Zhang, X. Bai, Cryst. Growth Des. 7, 153 (2007)

    Google Scholar 

  5. L. Cheng, Q. Xiang, Y. Liao, H. Zhang, Energy Environ. Sci. 11, 1362 (2018)

    Google Scholar 

  6. K. Han, X.-L. Peng, F. Li, M.-M. Yao, Catalysts 8, 453 (2018)

    Google Scholar 

  7. H. Zhao, Q. Fang, C. Chen, Z. Chao, Y. Tsang, Y. Wu, Appl. Organomet. Chem. 32, e4449 (2018)

    Google Scholar 

  8. P. D’Amico, A. Calzolari, A. Ruini, A. Catellani, Sci. Rep. 7, 16805 (2017)

    ADS  Google Scholar 

  9. V.K. Tulasidas, S. Belagali, A. Palakkandy, K. Kumar, Jpn. J. Appl. Phys. 57, 052302 (2018)

    ADS  Google Scholar 

  10. H. Kim, J.Y. Han, D.S. Kang, S.W. Kim, D.S. Jang, M. Suh, A. Kirakosyan, D.Y. Jeon, J. Cryst. Growth 326, 90 (2011)

    ADS  Google Scholar 

  11. X. Wang, Z. Xie, H. Huang, Z. Liu, D. Chen, G. Shen, J. Mater. Chem. 22, 6845 (2012)

    Google Scholar 

  12. Y.-P. Peng, X. Zou, Z. Bai, Y. Leng, B. Jiang, X. Jiang, L. Zhang, Sci. Rep. 5, 18365 (2015)

    ADS  Google Scholar 

  13. M. Hamadanian, A. Reisi-Vanani, A. Majedi, Appl. Surf. Sci. 256, 1837 (2010)

    ADS  Google Scholar 

  14. Y.I. Choi, S. Lee, S.K. Kim, Y.-I. Kim, D.W. Cho, M.M. Khan, Y. Sohn, J. Alloys Compd. 675, 46 (2016)

    Google Scholar 

  15. A. Fkiri, A. Mezni, L.S. Smiri, J. Inorg. Organomet. Polym. Mater. 28, 27 (2017)

    Google Scholar 

  16. M. Madkour, F.A. Sagheer, Opt. Mater. Express 7, 158 (2017)

    ADS  Google Scholar 

  17. P. Sivakumar, G. GauravKumar, P. Sivakumar, S. Renganathan, J. Nanostruct. Chem. 4, 107 (2014)

    Google Scholar 

  18. P. Sangpour, F. Hashemi, A. Moshfegh, J. Phys. Chem. C 114, 13955 (2010)

    Google Scholar 

  19. N. Güy, M. Özacar, Int. J. Hydrog. Energy 41, 20100 (2016)

    Google Scholar 

  20. J. Gomes, A. Lopes, K. Bednarczyk, M. Gmurek, M. Stelmachowski, A. Zaleska-Medynska, E. Quinta-Ferreira, R. Costa, R. Quinta-Ferreira, R. Martins, Chem Eng. 2, 4 (2018)

    Google Scholar 

  21. Y.-Y. Cai, S. Collins, M. Gallagher, U. Bhattacharjee, R. Zhang, T.H. Chow, A. Ahmadivand, B. Ostovar, A. Al-Zubeidi, J. Wang, P. Nordlander, C. Landes, S. Link, ACS Energy Lett. 4, 2458 (2019)

    Google Scholar 

  22. K. Li, N. Hogan, M. Kale, N. Halas, P. Nordlander, P. Christopher, Nano Lett. 17, 3710 (2017)

    ADS  Google Scholar 

  23. M. Brongersma, N. Halas, P. Nordlander, Nat. Nanotechnol. 10, 25 (2015)

    ADS  Google Scholar 

  24. O. Douglas-Gallardo, M. Berdakin, T. Frauenheim, C. Sánchez, Nanoscale 11, 8604 (2019)

    Google Scholar 

  25. H. Zhang, A. Govorov, J. Phys. Chem. C 118, 7606 (2014)

    Google Scholar 

  26. L. Krayer, E. Tennyson, M. Leite, J. Munday, ACS Photonics 5, 306 (2018)

    Google Scholar 

  27. G. Wang, B. Huang, Z. Li, Z. Lou, Z. Wang, Y. Dai, M.-H. Whangbo, Sci. Rep. 5, 8544 (2015)

    ADS  Google Scholar 

  28. C. Xu, P. Ravi Anusuyadevi, C. Aymonier, R. Luque, S. Marre, Chem. Soc. Rev. 48, 3868 (2019).

  29. B. Liu, X. Hu, X. Li, Y. Li, C. Chen, K. Lam, Sci. Rep. 7, 16396 (2017)

    ADS  Google Scholar 

  30. S.S. Boxi, S. Paria, RSC Adv. 4, 37752 (2014)

    Google Scholar 

  31. Y. Piña-Pérez, F. Tzompantzi-Morales, R. Pérez-Hernández, R. Arroyo-Murillo, P. Acevedo-Peña, R. Gómez-Romero, Fuel 198, 11 (2017)

    Google Scholar 

  32. F. La Porta, A. Nogueira, L. Gracia, W. Pereira, G. Botelho, T. Mulinari, J. Andrés, E. Longo, J. Phys. Chem. Solids 103, 179 (2017)

    ADS  Google Scholar 

  33. G.-J. Lee, J. Wu, Powder Technol. 318, 8 (2017)

    Google Scholar 

  34. V. Mote, Y. Purushotham, B. Dole, Cerâmica 59, 614 (2013)

    Google Scholar 

  35. H. Khawal, N. Raskar, U. Gawai, B. Dole, AIP Conf. Proc. 1728, 020431 (2016)

    Google Scholar 

  36. M. Jothibas, C. Manoharan, S. JohnsonJeyakumar, P. Praveen, I. KartharinalPunithavathy, J. PrinceRichard, Sol. Energy 159, 434 (2018)

    ADS  Google Scholar 

  37. A. Joshi, A. Gahane, A.K. Thakur, RSC Adv. 6, 108545 (2016)

    Google Scholar 

  38. G. Murugadoss, M. Rajesh Kumar, Appl. Nanosci. 4, 67 (2014).

  39. R. Viana, A. da Silva, A. Pimentel, Advances in Physical Chemistry 2012, 14 (2012)

    Google Scholar 

  40. R. Viswanath, H.S.B. Naik, Y.K.G. Somalanaik, P.K.P. Neelanjeneallu, K.N. Harish, M.C. Prabhakara, J. Nanotechnol. 2014, 8 (2014)

    Google Scholar 

  41. D. Bera, L. Qian, T.-K. Tseng, P. Holloway, Materials 3, 2260 (2010)

    ADS  Google Scholar 

  42. D. Pathania, D. Gupta, A. Al-Muhtaseb, G. Sharma, A. Kumar, M. Naushad, T. Ahamad, S. Alshehri, J. Photochem. Photobiol. A 329, 61 (2016)

    Google Scholar 

  43. R. Tamrakar, M. Ramrakhiani, B. Chandra, Open Nanosci. J. 2, 1 (2008)

    Google Scholar 

  44. A. Murugadoss, A. Chattopadhyay, Bull. Mater. Sci. 31, 533 (2008)

    Google Scholar 

  45. K. Anand, R. Mohan, R. MohanKumar, M. Chinnu, R. Jayavel, Proc. Indian Natl. Sci. Acad. 79, 395 (2013)

    Google Scholar 

  46. H.-F. Shao, X.-F. Qian, Z.-K. Zhu, J. Solid State Chem. 178, 3522 (2005)

    ADS  Google Scholar 

  47. X. Tang, W. Cheng, E.S.G. Choo, J. Xue, Chem. Commun. 47, 5217 (2011)

    Google Scholar 

  48. N. Shanmugam, S. Cholan, N. Kannadasan, K. Sathishkumar, G. Viruthagiri, J. Nanomater. 2013, 7 (2013)

    Google Scholar 

  49. D.D. Nithyaprakash, M. Ramamurthy, P. Thirunavukarasu, T. Balasubramaniam, J. Chandrasekaran, P. Maadeswaran, J. Optoelectron. Adv. Mater. 12, 1 (2010)

    Google Scholar 

  50. B. Boyanov, A. Peltekov, ISRN Ind. Eng. 2013, 8 (2013)

    Google Scholar 

  51. N. Huse, A. Dive, K. Gattu, R. Sharma, Mater. Sci. Semicond. Process. 67, 62 (2017)

    Google Scholar 

  52. H. Rao, Z. Lu, X. Liu, H. Ge, Z. Zhang, P. Zou, H. He, Y. Wang, RSC Adv. 6, 46299 (2016)

    Google Scholar 

  53. A. Eyasu, O. Yadav, R. Bachheti, Int. J. ChemTech Res 5, 974 (2013)

    Google Scholar 

  54. M.F. Sanad, A.E. Shalan, S.M. Bazid, S. Abdelbasir, J. Environ. Chem. Eng. 6, 3981 (2018)

    Google Scholar 

  55. Z. Ye, L. Kong, F. Chen, Z. Chen, Y. Lin, C. Liu, Optik 164, 345 (2018)

    ADS  Google Scholar 

  56. A. Rafiq, M. Imran, M. Ikram, M. Naz, M. Aqeel, H. Majeed, S. Hussain, S. Ali, Mater. Res. Express 6, 055801 (2019)

    ADS  Google Scholar 

  57. Y. Wang, X. Zhan, F. Wang, Q. Wang, M. Safdar, J. He, J. Mater. Chem. A 2, 18413 (2014)

    Google Scholar 

  58. M.A. Mumin, G. Moula, P. Charpentier, RSC Adv. 5, 67767 (2015)

    Google Scholar 

  59. N. Suganthi, K. Pushpanathan, J. Inorg. Organomet. Polym. Mater. 29, 1141 (2019)

    Google Scholar 

  60. G. Murugadoss, R. Jayavel, M. RajeshKumar, R. Thangamuthu, Appl. Nanosci. 6, 503 (2016)

    ADS  Google Scholar 

  61. F. Kurnia, J. Hart, Chemphyschem Eur. J. Chem. Phys. Phys. Chem. 16, 1 (2015)

    Google Scholar 

  62. Y.-C. Zhang, N. Afzal, L. Pan, X. Zhang, J.-J. Zou, Adv. Sci. 6, 1900053 (2019)

    Google Scholar 

  63. K. Zhang, Z. Zhou, L. Guo, Int. J. Hydrog. Energy 36, 9469 (2011)

    Google Scholar 

  64. P. Zhang, R. Hong, Q. Chen, W. Feng, Powder Technol. 253, 360 (2014)

    Google Scholar 

  65. X. Zhao, M. Li, X. Lou, Mater. Sci. Semicond. Process. 16, 489 (2013)

    Google Scholar 

Download references

Acknowledgment

The authors are grateful to UGC-DAE-CSR, Mumbai, for financial assistance through Project No. UDCSR/MUM/CD/CSR-M-256/2017/1029, India, and Prof. S.S. Shah for his scientific discussion and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Dole.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dake, D.V., Raskar, N.D., Mane, V.A. et al. Exploring the role of defects on diverse properties of Cr-substituted ZnS nanostructures for photocatalytic applications. Appl. Phys. A 126, 640 (2020). https://doi.org/10.1007/s00339-020-03669-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03669-1

Keywords

Navigation