Skip to main content
Log in

Effect of Zn/S non-stoichiometric ratio on the structural, optical and electronic properties of nano-ZnS

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Non-stoichiometric ZnS nanomaterials were prepared using a thermolysis procedure by decreasing the stoichiometric amount of thiourea relative to the amount of zinc acetate as starting precursors: Zn(Ac)/(1−x) thiourea (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5). The high-resolution transmission electron microscope revealed the nanonature of the obtained samples. The X-ray diffraction analysis applying Rietveld method was carried out to explore the influence of Zn/S non-stoichiometry on the structural and microstructural properties of the crystalline phases in the samples. ZnO phase appeared for x ≥ 0.2 forming ZnS1–x/ZnO heterostructures; its percentage increased with increasing non-stoichiometric parameter (x). Incorporation of oxygen ions into the ZnS lattice compensating the sulfur deficiency was manifested by Fourier transform infrared spectroscopy. The UV–Vis analysis revealed the decrease in the bandgap of ZnS from 3.42 eV for x = 0.0 to 2.71 eV for x = 0.5, making these materials suitable for new applications. The influence of non-stoichiometric parameter (x) on the photoluminescence emissions of formed samples was examined; results indicated the spectrum shift towards higher wavelengths. Density function calculations were performed in order to compare the electronic and optical properties of sulfur-deficient ZnS0.9 (single phase) with the ZnS sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.K. Heiba, M.B. Mohamed, J. Inorg. Organomet Polym. 30, 879 (2020)

    Article  Google Scholar 

  2. W. Zhao, Z. Wei, L. Zhang, X. Wu, J. Jiang, J. Alloy. Compd. 698, 754 (2017)

    Article  Google Scholar 

  3. H.K. Sadekar, A.V. Ghule, Ramphal Sharma. J. Alloy. Compd. 509(18), 5525 (2011)

    Article  Google Scholar 

  4. M.B. Mohamed, Int. J. Appl. Ceram. Technol. 17(2), 823 (2020)

    Article  Google Scholar 

  5. B. Barman, K.V. Bangera, G.K. Shivakumar, J. Alloy. Compd. 772, 532 (2019)

    Article  Google Scholar 

  6. Z.K. Heiba, M.B. Mohamed, N.G. Imam, Ceram. Int. 41(10), 12930 (2015)

    Article  Google Scholar 

  7. M.B. Mohamed, Z.K. Heiba, N.G. Imam, J. Mol. Struct. 1163, 442 (2018)

    Article  ADS  Google Scholar 

  8. Y. Yuan, G.F. Huang, W.Y. Hu, D.N. Xiong, W.Q. Huanga, Mater. Lett. 175, 68 (2016)

    Article  Google Scholar 

  9. T. Xu, L. Zhang, H. Cheng, Y. F. Zhu, Appl. Catal., B, 101(3–4) (2011) 382.

  10. G. Poongodi, P. Anandan, R.M. Kumar, R. Jayavel, Spectrochim. Acta, Part A 148, 237 (2015)

    Article  ADS  Google Scholar 

  11. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Article  Google Scholar 

  12. R. Marschall, L. Wang, Catal. Today 225, 111 (2014)

    Article  Google Scholar 

  13. M. Jaquez, K.M. Yu, M. Ting, M. Hettick, J.F.S. Royo, M. Wełna, A. Javey, O.D. Dubon, W. Walukiewicz, J. Appl. Phys. 118, 215702 (2015)

    Article  ADS  Google Scholar 

  14. Z. Chen, S. Zhou, Y. Li, X.X. Li, Y. Lia, W. Sun, G. Liu, N. Chen, G. Du, Mater. Sci. Semicond. Process. 16(3), 833 (2013)

    Article  Google Scholar 

  15. C. Persson, C.P. Bjorkman, J. Malmstrom, T. Torndahl, M. Edoff, Phys. Rev. Lett. 97, 146403 (2006)

    Article  ADS  Google Scholar 

  16. A. Grimm, J. Just, D. Kieven, I. Lauermann, J. Palm, A. Neisser, T. Rissom, R. Klenk, Phys. Status Solidi RRL 4, 109 (2010)

    Article  Google Scholar 

  17. S. Locmelis, C. Brünig, M. Binnewies, A. Börger, K.D. Becker, T. Homann, T. Bredow, J. Mater. Sci. 42, 1965 (2007)

    Article  ADS  Google Scholar 

  18. Y.Z. Yoo, Z.W. Jin, T. Chikyow, T. Fukumura, M. Kawasaki, H. Koinuma, Appl. Phys. Lett. 81, 3798 (2002)

    Article  ADS  Google Scholar 

  19. B.K. Meyer, A. Polity, B. Farangis, Y. He, D. Hasselkamp, T. Krämer, C. Wang, Appl. Phys. Lett. 85, 4929 (2004)

    Article  ADS  Google Scholar 

  20. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, Renew. Sustain. Energy Rev. 11, 401 (2007)

    Article  Google Scholar 

  21. A. Mallick, S. Chattopadhyay, G. De, D. Basak, J. Alloy. Compd. 770, 813 (2019)

    Article  Google Scholar 

  22. J. Jose Gil, O.A. Martínez, Y.P. Perez, R.P. Hernandez, C.E.S. Vargas, R. Gomez, F. Tzompantzi, Renewable Energy 145, 124 (2020)

    Article  Google Scholar 

  23. P.V. Raleaooa, A. Roodt, G.G. Mhlongo, D.E. Motaung, R.E. Kroon, O.M. Ntwaeaborwa, Phys. B 507, 13 (2017)

    Article  ADS  Google Scholar 

  24. Z.K. Heiba, M.B. Mohamed, M.H.A. Kader, J. Electron. Mater. 47(5), 2945 (2018)

    Article  Google Scholar 

  25. Z.K. Heiba, M.B. Mohamed, Appl. Phys. A 124(6), 446 (2018)

    Article  ADS  Google Scholar 

  26. Z.K. Heiba, M.B. Mohamed, N.G. Imam, J. Mol. Struct. 1136, 321 (2017)

    Article  ADS  Google Scholar 

  27. Z.K. Heiba, N.G. Imam, M.B. Mohamed, Mater. Sci. Semicond. Process. 34, 39–44 (2015)

    Article  Google Scholar 

  28. L. Lutterotti, Nucl. Inst. Methods, Phys. Res. B. 268 (2010) 334.

  29. J. Rodríguez-Carvajal, Phys. B (Amsterdam, Neth.) 192 (1993) 55.

  30. J. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B Condens. Matter 46, 6671 (1992)

    Article  ADS  Google Scholar 

  31. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, Z. Kristallogr, Cryst. Mater. 220(5–6), 567 (2005)

    Google Scholar 

  32. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  33. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett 77, 3865 (1996)

    Article  ADS  Google Scholar 

  34. Z.K. Heiba, Cryst. Res. Technol. 38(6), 488–493 (2003)

    Article  Google Scholar 

  35. Z.K. Heiba, Powder Diffr. 17(3), 191–195 (2002)

    Article  ADS  Google Scholar 

  36. J.X. Yang, X.L. Zhao, Y.P. Tian, S.Y. Zhang, B.K. Jin, X.P. Hao, X.Y. Xu, M.H. Jiang, J. Crystal Growth 310, 4358 (2008)

    Article  ADS  Google Scholar 

  37. B. S. Rema Devi, R. Raveendran, A. V. Vaidyan. Pramana-J. Phy. 68 (2007) 679.

  38. K.G. Allum, J.A. Creighton, J.H.S. Green, G.J. Minkoff, L.J.S. Prince, spectrochim. Acat. A 24, 927 (1968)

    Google Scholar 

  39. A. Sadollahkhani, I. Kazeminezhad, J. Lu, O. Nur, L.H.M. Willander, RSC Adv. 4, 36940 (2014)

    Article  Google Scholar 

  40. J. Huso, L. Bergman, M.D. McCluskey, J. Appl. Phys. 125, 075704 (2019)

    Article  ADS  Google Scholar 

  41. ] J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15 (1966) 627.

  42. V.V. Atuchin, L.I. Isaenko, V.G. Kesler, Z.S. Lin, M.S. Molokeev, A.P. Yelisseyev, S.A. Zhurkov, J. Solid State Chem. 187, 159 (2012)

    Article  ADS  Google Scholar 

  43. M. Ishikawa, T. Nakayama, Phys. Status Solidi C 10, 1385 (2013)

    Article  ADS  Google Scholar 

  44. H.L. Pan, B. Yao, T. Yang, Y. Xu, B.Y. Zhang, W.W. Liu, D.Z. Shen, Appl. Phys. Lett. 97, 142101 (2010)

    Article  ADS  Google Scholar 

  45. S. Locmelis, C. Brunig, M. Binnewies, A. Borger, K.D. Becker, T. Homann, T. Bredow, J Mater Sci. 42, 1965 (2007)

    Article  ADS  Google Scholar 

  46. A. Torabi, V.N. Staroverov, J. Phys. Chem. Lett. 6, 2075 (2015)

    Article  Google Scholar 

  47. Y. Jiang, X.M. Meng, J. Liu, Z.Y. Xie, C.S. Lee, S.T. Lee, Adv. Mater. 15, 323 (2003)

    Article  Google Scholar 

  48. Y. Chang, M. Wang, X. Chen, S. Ni, W. Qiang, Solid State Commun. 142, 295 (2007)

    Article  ADS  Google Scholar 

  49. W.G. Becker, A.J. Bard, J. Phys. Chem. 87, 4888 (1983)

    Article  Google Scholar 

  50. A.A. Bol, A. Meijerink, J. Phys. Chem. B 105, 10203 (2001)

    Article  Google Scholar 

  51. Z.K. Heiba, M.B. Mohamed, N.Y. Mostafa, Appl. Phys. A 125(2), 132 (2019)

    Article  ADS  Google Scholar 

  52. V.L. Bekenev, OYu Khyzhun, V.V. Atuchin, J. Alloys Compd. 485, 51 (2009)

    Article  Google Scholar 

  53. V. V. Atuchin, Fei Liang, S. Grazhdannikov, L. I. Isaenko, P. G. Krinitsin, M. S. Molokeev, I. P. Prosvirin, Xingxing Jiang and Zheshuai Lin, RSC Adv. 8 (2018) 9946

  54. Z. Fang, S. Weng, X. Ye, W. Feng, Z. Zheng, M. Lu, S. Lin, X. Fu, P. Liu, A.C.S. Appl, Mater. Interfaces 7(25), 13915 (2015)

    Article  Google Scholar 

  55. A. Delin, P. Ravindran, O. Eriksson, J. Wills, Int. J. Quantum Chem. 69, 349 (1998)

    Article  Google Scholar 

  56. S.Z. Karazhanov, P. Ravindran, A. Kjekshus, H. Fjellvag, B.G. Svensson, Phys. Rev. B 75, 155104 (2007)

    Article  ADS  Google Scholar 

  57. P. Ravindran, A. Delin, B. Johansson, O. Eriksson, J.M. Wills, Phys. Rev. B 59, 1776 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Deanship of Scientific Research, King Saud University, for funding through Vice Deanship of Scientific Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bakr Mohamed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiba, Z.K., Albassam, A.A. & Mohamed, M.B. Effect of Zn/S non-stoichiometric ratio on the structural, optical and electronic properties of nano-ZnS. Appl. Phys. A 126, 479 (2020). https://doi.org/10.1007/s00339-020-03667-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03667-3

Keywords

Navigation