Skip to main content
Log in

Hybrid functional calculations of electro-optical properties of novel Ga1−xInxTe ternary chalcogenides

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Doping GaTe semiconductor with indium can be beneficial in the realization of high-quality radiation detectors. In this study, first-principle calculations based on the density functional theory have been used to investigate the structural and electro-optical properties of Ga1−xInxTe alloys. For the electronic structure calculations, the exchange–correlation functionals are treated with an accurate PBE0 hybrid functional giving improved agreement with experimental band energies. The influence of the In concentration on the energy band gaps is analyzed. Furthermore, the direction for the highest mobility of Ga1−xInxTe is estimated by calculating the effective mass of carriers respecting to the crystallographic directions from calculated electronic band structures. Optical spectra of Ga1−xInxTe are evaluated for all compositions (x = 0, 0.25, 0.5 and 0.75) and for different polarization directions in the range of 0–14 eV. The calculated optical spectra of Ga1–xInxTe are found to have a remarkable redshift as the alloying composition increases. The calculated static dielectric constant for the entire concentration shows that the considered alloys are a high-dielectric constant materials. Our study shows that Ga1−xInxTe alloys exhibit metallic properties in some energy ranges. Our results suggest that the new Ga1−xInxTe alloys are a promising material for radiation detectors, microelectronics and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N. Spalatu, I. Evtodiev, I. Caraman, S. Evtodiev, I. Rotaru, M. Caraman, D. Untila, Energy Procedia. 84, 176 (2015)

    Article  Google Scholar 

  2. B.P. Bahuguna, L.K. Saini, R.O. Sharma, B. Tiwari, Phys. Chem. Chem. Phys. 20, 28575 (2018)

    Article  Google Scholar 

  3. H.S. Güder, B. Abay, H. Efeoǧlu, Y.K. Yoǧurtçu, J. Lumin. 93, 243 (2001)

    Article  Google Scholar 

  4. P. Fielding, G. Fischer, E. Mooser, J. Phys. Chem. Solids. 8, 434 (1959)

    Article  ADS  Google Scholar 

  5. S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, M.S. Dresselhaus, ACS Nano 10, 8964 (2016)

    Article  Google Scholar 

  6. K. Liu, J. Xu, X.C. Zhang, Appl. Phys. Lett. 85, 863 (2004)

    Article  ADS  Google Scholar 

  7. P.M. Reshmi, A.G. Kunjomana, K.A. Chandrasekharan, M. Meena, C.K. Mahadevan, Int J Soft Comput Eng (IJSCE) 1, 228 (2011)

    Google Scholar 

  8. V.P. Gupta, V.K. Srivastava, J. Phys. Chem. Solids. 42, 1071 (1981)

    Article  ADS  Google Scholar 

  9. M. Abdel Rahman, A.E. Belal, J. Phys. Chem. Solids. 61, 925 (2000)

  10. C. Tatsuyama, Y. Watanabe, C. Hamaguchi, J. Nakai, J. Phys. Soc. Japan. 29, 150 (1970)

    Article  ADS  Google Scholar 

  11. V. Grasso, G. Mondio, G. Saitta, P. Lett. 46, 95 (1973)

    Article  ADS  Google Scholar 

  12. D.F. Edwards, Handb. Opt. Constants Solids. (1997) 489–505

  13. C. Rocha Leão, V. Lordi, Phys. Rev. B. 84, 165206 (2011)

  14. A. Gouskov, J. Camassel, L. Gouskov, Cryst. Growth Charact. 5, 323 (1982)

    Article  Google Scholar 

  15. Y. Cui, D.D. Caudel, P. Bhattacharya, A. Burger, K.C. Mandal, D. Johnstone, S.A. Payne, J. Appl. Phys. 105, 053709 (2009)

    Article  ADS  Google Scholar 

  16. S. Shigetomi, T. Ikari, H. Nakashima, Jpn. J. Appl. Phys. 37, 3282 (1998)

    Article  ADS  Google Scholar 

  17. S. Pal, D.N. Bose, Solid State Commun. 97, 725 (1996)

    Article  ADS  Google Scholar 

  18. P. Hohenberg, W. Kohn, Phys. Rev. 136, 864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  19. W. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  20. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, An augmented plane wave plus local orbitals program for calculating crystal properties, WIEN2k 2008 (Vienna: Vienna University of Technology)

  21. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  22. Z. Rak, S.D. Mahanti, K.C. Mandal, N.C. Fernelius, Phys. Rev. B. 82, 155203 (2010)

    Article  ADS  Google Scholar 

  23. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

    Article  ADS  Google Scholar 

  24. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)

    Article  Google Scholar 

  25. C. Adamo, G.E. Scuseria, V. Barone, J. Chem. Phys. 111, 2889 (1999)

    Article  ADS  Google Scholar 

  26. D. Fritsch, B.J. Morgan, A. Walsh, Nanoscale Res. Lett. 12, 19 (2017)

    Article  ADS  Google Scholar 

  27. M. Julien-Pouzol, S. Jaulmes, M. Guittard, F. Alapini, Acta Cryst. B 35, 2848 (1979)

    Article  Google Scholar 

  28. W.B. Pearson, Acta Crystallogr. 17, 1 (1964)

    Article  Google Scholar 

  29. A. Mujica, A. Rubio, A. Mun˜oz and R. J. Needs, Rev. Mod. Phys. 75, 863 (2003)

  30. F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944)

    Article  ADS  Google Scholar 

  31. U.S. Shenoy, U. Gupta, D.S. Narang, D.J. Late, U.V. Waghmare, C.N.R. Rao, Chem. Phys. Lett. 651, 148 (2016)

    Article  ADS  Google Scholar 

  32. J.F. Sánchez-Royo, J. Pellicer-Porres, A. Segura, V. Muñoz-Sanjosé, G. Tobías, P. Ordejón, E. Canadell, Y. Huttel, Phys. Rev. B. 65, 1152011 (2002)

    Article  Google Scholar 

  33. A. Yamamoto, A. Soyouj, T. Goto, Phys. Rev. B. 64, 035210 (2001)

    Article  ADS  Google Scholar 

  34. Z. Rak, S.D. Mahanti, K.C. Mandal, N.C. Fernelius, J. Phys. Cond. Mat. 21, 015504 (2009)

    Article  ADS  Google Scholar 

  35. F. Yun, M.A. Reshchikov, L. He, T. King, H. Morkoç, S.W. Novak, L. Wei, J. Appl. Phys. 92, 4837 (2002)

    Article  ADS  Google Scholar 

  36. D.N. Bose, S. Pal, Rev. B. 63, 235321 (2001)

    Article  Google Scholar 

  37. G. Lucovsky, J. Vac. Sci. Technol. A. 19, 1553 (2001)

    Article  ADS  Google Scholar 

  38. H. Ben Abdallah, R. Bennaceur, Phys. B. 404, 194 (2009)

  39. S.M. Alay-e-Abbas, A. Sajid, Chinese. J. Phys. 51, 790 (2013)

    Google Scholar 

  40. T. Chattopadhyay, R.P. Santandrea, H.G. Von Schnering, J. Phys. Chem. Solids. 46, 351 (1985)

    Article  ADS  Google Scholar 

  41. A. Zubiaga, J.A. García, F. Plazaola, V. Muñoz-Sanjosé, M.C. Martínez-Tomás, J. Appl. Phys. 92, 7330 (2002)

    Article  ADS  Google Scholar 

  42. S. Shigetomi, T. Ikari, H. Nishimura, J. Lumin. 78, 117 (1998)

    Article  Google Scholar 

  43. J. Camassel, P. Merle, H. Mathieu, A. Gouskov, Phys. Rev. B. 19, 1060 (1979)

    Article  ADS  Google Scholar 

  44. N. Nanda, IJ TRD. 1, 1 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Qassim University represented by the Deanship of Scientific Research on the material support for this research under the Number 3591-alrasscac-2018–1-14-S during the academic year 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ben Abdallah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Abdallah, H., Ouerghui, W. Hybrid functional calculations of electro-optical properties of novel Ga1−xInxTe ternary chalcogenides. Appl. Phys. A 126, 387 (2020). https://doi.org/10.1007/s00339-020-03581-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03581-8

Keywords

Navigation