Skip to main content
Log in

Studies on multifunctional properties of GdFe1−xCoxO3 multiferroics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Multiferroics—materials attract considerable attention, due to their fascinating physics properties. The motivating physical properties of GdFe1−xCoxO3 (0.00 ≤ x ≤ 0.25) orthorhombic structure were adjusted in a controlled way by modifying the composition through the synthesis processes. The orthorhombic structure within the space group Pbnm is confirmed through X-ray diffraction patterns. The data reveal that the samples under investigation are G-type antiferromagnetic with a weak ferromagnetic moment. Dzyaloshinskii–Moriya interaction is a crucial source of the observed weak ferromagnetic behavior for the investigated samples. An anisotropy constant for GdFe0.9Co0.1O3 is approximately equal to 4065 emu Oe/gm, which is 9 times greater than that of GdFeO3 samples. The higher values of anisotropic constant K indicate that the prepared samples will be promising and helpful for technological applications at a variety of temperatures. Cobalt doping has a unique advantage as it reduces the switching field distribution and the change of the entropy (ΔS) of the investigated samples. The presence of Gd3+–O2− 2p, Fe3+–O2− 2p and Co–O-2p hybridization stabilizes the ferroelectric distortion causing an improvement in ferroelectric property. The effects of pH value and the contact time on the adsorption progression were studied and optimized to obtain the maximum possible adsorption efficiency of the Gadolinium/cobalt samples. The use of GdFe0.8Co0.2O3 removes 98% of lead from the waste water. The specific advantages of the investigated samples are ease of separation, high adsorption per unit area, low cost as well as recycled with significant efficiency. The investigated samples are recommended to be used as a reusable adsorbent for the highly efficient removal of lead metal ions from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T.W. Kool, Properties of Perovskites and Other Oxides (World Scientific, Singapore, 2010)

    Google Scholar 

  2. M.A. Gilleo, J. Chem. Phys. 24, 6 (1956)

    Google Scholar 

  3. N. Kumar, A. Shukla, N. Kumar, S. Hajra, S. Sahoo, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 30, 1919–1926 (2019)

    Google Scholar 

  4. N. Kumar, A. Shukla, Int. J. Modern Phys. B 32, 1840069 (2018)

    ADS  Google Scholar 

  5. D. Treves, J. Appl. Phys. 36, 1033 (1965)

    ADS  Google Scholar 

  6. N.J.R. Hayes, A.P. Grosvenor, J. Phys.: Condens. Matter 23, 465502 (2011)

    ADS  Google Scholar 

  7. N. Kumar, A. Shukla, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 28, 6673–6684 (2017)

    Google Scholar 

  8. N. Kumar, A. Shukla, R.N.P. Choudhary, J. Alloys Compd. 747, 895–904 (2018)

    Google Scholar 

  9. N. Kumara, A. Shuklaa, R.N.P. Choudhary, Prog. Nat. Sci.: Mater. Int. 28, 308–314 (2018)

    Google Scholar 

  10. C. Madhu, M.B. Bellakki, V. Mannivannan, Indian J. Eng. Mater. Sci. 17, 131 (2010)

    Google Scholar 

  11. P.K. Roy, J. Bera, J. Magn. Magn. Mater. 298, 38 (2006)

    ADS  Google Scholar 

  12. H. Harzali, F. Saida, A. Marzouki, A. Megriche, F. Baillon, F. Espitalier, A.A. Mgaidi, J. Magn. Magn. Mater. 419, 50–56 (2016)

    ADS  Google Scholar 

  13. M. Kumar, H.S. Dosanjh, H. Singh, J. Environ. Chem. Eng. 6, 6194–6206 (2018)

    Google Scholar 

  14. B.D. Cullity, Elements of X-ray Diffraction (Adison-Wesley Publ. Co., London, 1967)

    Google Scholar 

  15. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)

    ADS  Google Scholar 

  16. C.S. Vandana, B.H. Rundramadevi, Int. J. Res. Appl. Sci. Eng. Technol. (IJRASET) 5, 1999 (2017)

    Google Scholar 

  17. K. Sultan, M. Ikram, K. Asakan, Vacuum 99, 251 (2014)

    ADS  Google Scholar 

  18. E.E. Ateia, D.E. El-Nashar, R. Ramadan, M.F. Shokry, J. Inorg. Organomet. Polym Mater. 30, 1041–1048 (2020)

    Google Scholar 

  19. X. Ge, Y. Liu, X. Liu, Sensors Actuators B: Chem. 79, 171 (2001)

    Google Scholar 

  20. S.S. Ata-Allah, A. Hashhash, J. Magn. Magn. Mater. 307, 191 (2006)

    ADS  Google Scholar 

  21. V.M. Goldschmidt, Naturwissenchaffen 14, 477 (1926)

    ADS  Google Scholar 

  22. E.E. Ateia, A.T. Mohamed, K. Elsayed, J. Magn. Magn. Mater. 452, 169–178 (2018)

    ADS  Google Scholar 

  23. E.E. Ateia, A.T. Mohamed, J. Supercond. Novel Magn. 30, 627–633 (2017)

    Google Scholar 

  24. S. Husain, A.O.A. Keelani, W. Khan, Nanostruct. Nanoobjects 15, 17 (2018)

    Google Scholar 

  25. S.S.K. Ma, L. Chen, S. Zhang, J. Lin, S.P. Jiang, Int. J. Hydrog. Energy 38, 13300 (2013)

    Google Scholar 

  26. J. Choi, B. Kim, S.H. Song, J.S. Park, Int. J. Hydrog. Energy 41, 9619 (2016)

    Google Scholar 

  27. Y. Janbutrach, S. Hunpratub, E. Swatsitang, Nanoscale Res. Lett. 9, 498 (2014)

    ADS  Google Scholar 

  28. S. Thirumalairajan, K. Girija, V. Ganesh, D. Mangalaraj, C. Viswanathan, N. Ponpandian, Crystal Growth Des. 13, 291 (2013)

    Google Scholar 

  29. M.D. Sturge, E.M. Gyorgy, R.C. LeCraw, J.P. Remeika, Phys. Rev. 180, 413 (1969)

    ADS  Google Scholar 

  30. B.J. Rani, M. Ravina, B. Saravanakumar, G. Ravi, V. Ganesh, S. Ravichandran, R. Yuvakkumar, Nanostruct. Nanoobjects 14, 84 (2018)

    Google Scholar 

  31. Recommendations: Pure Appl. Chem. 57 (1985) 603; Recommendations for the Characterization of Porous Solids, IUPAC Commission on Colloid and Surface Chemistry. Pure Appl. Chem. 66 (1994) 1739

  32. P. Paramasivan, P. Venkatesh, J. Supercond. Novel Magn. 29, 2805 (2016)

    Google Scholar 

  33. J. Kanamori, J. Phys. Chem. Solids 10(2–3), 87. Bibcode:1959JPCS…10…87 K. https://doi.org/10.1016/0022-3697(59)90061-7

  34. Y. Wei, H. Gui, Z. Zhao, J. Li, Y. Liu, S. Xin, X. Li, W. Xie, AIP Adv. 4, 127134 (2014)

    ADS  Google Scholar 

  35. M.A. Ahmed, S.I. El-Dek, Mater. Sci. Eng. B 128, 30 (2006)

    Google Scholar 

  36. E. Brück, O. Tegus, D.T.C. Thanh, K.H.J. Buschow, J. Magn. Magn. Mater. 310, 2793 (2006)

    ADS  Google Scholar 

  37. E.E. Ateia, M.M. Arman, E. Badawy, Appl. Phys. A 125, 499 (2019)

    ADS  Google Scholar 

  38. A.A. Azab, E.E. Ateia, S.A. Esmail, Appl. Phys. A 124, 469 (2018)

    ADS  Google Scholar 

  39. R. Day, M. Fuller, V.A. Schmidt, Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Inter. 13(4), 260–267 (1977)

    ADS  Google Scholar 

  40. T. Moriya, Phys. Rev. Lett. 4, 228 (1960)

    ADS  Google Scholar 

  41. J.J. Blanco, M. Insausti, I.G. Muro, L. Lezama, T. Rojo, J. Solid State Chem. 179, 623 (2006)

    ADS  Google Scholar 

  42. C. Song, Y. You, X. Chen, X. Zhou, Y. Wang, F. Pan, Nanotechnology 29, 112001 (2018)

    ADS  Google Scholar 

  43. R.J.M. Van de Veerdonk, X. Wu, D. Weller, IEEE Trans. Magn. 39, 590 (2003)

    ADS  Google Scholar 

  44. P. Sharma, P. Saxena, A. Kumar, D. Varshney, J. Alloys Compd. 706, 609 (2017)

    Google Scholar 

  45. N. Kumar, A. Shukla, N. Kumar, S. Sahoo, S. Hajra, R.N.P. Choudhary, Ceram. Int. 44, 21330–21337 (2018)

    Google Scholar 

  46. N. AlokShukla, R.N.P. Choudhary, Phys. Lett. A 381, 2721–2730 (2017)

    ADS  Google Scholar 

  47. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, A. Kumar, RSC Adv. 8, 36939–36950 (2018)

    Google Scholar 

  48. S.K. Pate, B. Kuriachen, N. Kumar, R. Nateriya, Ceram. Int. 44, 6426–6432 (2018)

    Google Scholar 

  49. M.A. Ahmed, S.F. Mansour, M.A. Abdo, Mater. Res. Bull. 48, 1796–1805 (2013)

    Google Scholar 

  50. E.E. Ateia, F.S. Soliman, Mater. Sci. Eng. B 244, 29–37 (2019)

    Google Scholar 

  51. F. Liu, K. Zhou, Q. Chen, A. Wang, W. Chen, J. Alloys Compd. 773, 140 (2019)

    Google Scholar 

  52. E.E. Ateia, R. Ramadan, A.S. Shafaay, Appl. Phys. A 126, 222 (2020)

    ADS  Google Scholar 

  53. S. Sobhanardakani, A. Jafari, R. Zandipaka, A. Meidanchi, Process Saf. Environ. Prot. 120, 348–357 (2018)

    Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude and appreciation to Ahmed Kamel, physics department, Faculty of Science, Cairo University, for his efforts in ferroelectric measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebtesam E. Ateia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateia, E.E., Ramadan, R. & Hussein, B. Studies on multifunctional properties of GdFe1−xCoxO3 multiferroics. Appl. Phys. A 126, 340 (2020). https://doi.org/10.1007/s00339-020-03518-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03518-1

Keywords

Navigation