Skip to main content

Advertisement

Log in

Machine learning the magnetocaloric effect in manganites from lattice parameters

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Efficient solid-state refrigeration techniques have drawn increasing attention due to their potential for improving energy efficiency of refrigeration temperature control systems without using harmful gas as in conventional gas compression techniques. Research on magnetocaloric lanthanum manganites with a large maximum magnetic entropy change near room temperature shows promising results for further developments of magnetic refrigeration devices. By incorporating chemical substitutions, oxygen content modifications, and various synthesis methods, these manganites experience lattice distortions from perovskite cubic structures to pseudocubic, orthorhombic, and rhombohedral structures. Further changes in lattice parameters can also be achieved by the introduction of strain due to lattice mismatches. Empirical results and previous models through thermodynamics and first principles show that changes in lattice parameters correlate with those in MMCE, but correlations are merely general tendencies and obviously not universal. In this work, the Gaussian process regression model is developed as a machine learning tool to find statistical correlations between the MMCE and lattice parameters among lanthanum manganites. More than 100 lattices, cubic, pseudocubic, orthorhombic, and rhombohedral, with the MMCE ranging from 0.65 to \(8.00\,\hbox {J}\,\hbox {kg}^{-1}\,\hbox {K}^{-1}\) under a field change of 5 T are explored for this purpose. The modeling approach demonstrates a high degree of accuracy and stability, contributing to efficient and low-cost estimations of the magnetocaloric effect. Furthermore, the machine learning algorithm predicts close MMCE results on epitaxial films with strained lattices against experimental results, which can provide guidance on thin film structure design and help understandings of magnetic phase transformations and magnetocaloric effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Abdouli, W. Cherif, H. Omrani, M. Mansouri, M.A. Valent, M.P.F. Graça, L. Ktari, Structural, magnetic and magnetocaloric properties of \(\text{ La }_{0. 5}\text{ Sm }_{0.2}\text{ Sr }_{0.3}\text{ Mn }_{1-x}\text{ Fe }_{x}\text{ O }_{3}\) compounds with (\(0\le \text{ x }\le 0.15\)). J. Magn. Magn. Mater. 475, 635–642 (2019)

    ADS  Google Scholar 

  2. G. Akça, S.K. Gönül, A. Ekicibil, Structural, magnetic and magnetocaloric properties of \((\text{ La }_{1-x}\text{ Sm }_{x})_{0.85}\text{ K }_{0. 15}\text{ MnO }_{3}\) (x= 0.0, 0.1, 0.2 and 0.3) perovskite manganites. Ceram. Int. 43(17), 15811–15820 (2017)

    Google Scholar 

  3. A.O. Ayaş, S.K. Çetin, M. Akyol, G. Akça, A. Ekicibil, Effect of B site partial Ru substitution on structural magnetic and magnetocaloric properties in \(\text{ La }_{0.7}\text{ Pb }_{0.3}\text{ Mn }_{1-x}\text{ Ru }_{x}\text{ O }_{3}\) (x= 0.0, 0.1 and 0.2) perovskite system. J. Mol. Struct. 1200, 127120 (2020)

    Google Scholar 

  4. S. Banik, I. Das, Effect of A-site ionic disorder on magnetocaloric properties in large band width manganite systems. J. Alloys Compd. 742, 248–255 (2018)

    Google Scholar 

  5. S. Banik, K. Das, I. Das, Enhancement of magnetoresistance and magnetocaloric effect at room temperature in polycrystalline \(\text{ Pr }_{0.8-x}\text{ La }_{x}\text{ Sr }_{0.2}\text{ MnO }_{3}\) (x= 0.2) compound. J. Magn. Magn. Mater. 490, 165443 (2019)

    Google Scholar 

  6. V. Basso, G. Bertotti, M. LoBue, C.P. Sasso, Theoretical approach to the magnetocaloric effect with hysteresis. J. Magn. Magn. Mater. 290, 654–657 (2005)

    ADS  Google Scholar 

  7. H. Ben Khlifa, Y. Regaieg, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Structural, magnetic and magnetocaloric properties of K-doped \(\text{ Pr }_{0.8}\text{ Na }_{0.2-x}\text{ K }_{x}\text{ MnO }_{3}\) manganites. J. Alloys Compd. 650, 676–683 (2015)

    Google Scholar 

  8. A. Bettaibi, R. M’nassri, A. Selmi, H. Rahmouni, N. Chniba-Boudjada, A. Cheikhrouhou, K. Khirouni, Effect of chromium concentration on the structural, magnetic and electrical properties of praseodymium-calcium manganite. J. Alloys Compd. 650, 268–276 (2015)

    Google Scholar 

  9. M. Bourouina, A. Krichene, N.C. Boudjada, M. Khitouni, W. Boujelben, Structural, magnetic and magnetocaloric properties of nanostructured \(\text{ Pr }_{0.5}\text{ Sr }_{0.5}\text{ MnO }_{3}\) manganite synthesized by mechanical alloying. Ceram. Int. 43(11), 8139–8145 (2017)

    Google Scholar 

  10. E. Bouzaiene, A.H. Dhahri, J. Dhahri, E.K. Hlil, A. Bajahzar, Effect of A-site-substitution on structural, magnetic and magnetocaloric properties in \(\text{ La }_{0.7}\text{ Sr }_{0. 3}\text{ Mn }_{0. 9}\text{ Cu }_{0.1}\text{ O }_{3}\) manganite. J. Magn. Magn. Mater. 491, 165540 (2019)

    Google Scholar 

  11. V. Franco, J.S. Blázquez, A. Conde, Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl. Phys. Lett. 89(22), 222512 (2006)

    ADS  Google Scholar 

  12. V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramrez, A. Conde, Magnetocaloric effect: from materials research to refrigeration devices. Prog. Mater. Sci. 93, 112–232 (2018)

    Google Scholar 

  13. V. Franco, T. Gottschall, K.P. Skokov, O. Gutfleisch, First-order reversal curve (FORC) analysis of magnetocaloric heusler-type alloys. IEEE Magn. Lett. 7, 1–4 (2016)

    Google Scholar 

  14. S. Ghodhbane, E. Tka, J. Dhahri, E.K. Hlil, A large magnetic entropy change near room temperature in \(\text{ La }_{0.8}\text{ Ba }_{0.1}\text{ Ca }_{0.1}\text{ Mn }_{0.97}\text{ Fe }_{0.03}\text{ O }_{3}\) perovskite. J. Alloys Compd. 600, 172–177 (2014)

    Google Scholar 

  15. R. Gimaev, Y. Spichkin, B. Kovalev, K. Kamilov, V. Zverev, A. Tishin, Review on magnetic refrigeration devices based on HTSC materials. Int. J. Refrig. 100, 1–12 (2019)

    Google Scholar 

  16. O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 23(7), 821–842 (2011)

    Google Scholar 

  17. R. Hamdi, A. Tozri, M. Smari, E. Dhahri, L. Bessais, Structural, magnetic, magnetocaloric and electrical studies of \(\text{ Dy }_{0.5}(\text{ Sr }_{1-x}\text{ Ca }_{x})_{0.5}\text{ MnO }_{3}\) manganites. J. Magn. Magn. Mater. 444, 270–279 (2017)

    ADS  Google Scholar 

  18. L.A. Han, J. Yang, H. Yang, T. Zhang, C. Chen, Structural and magnetocaloric properties of bilayered manganite \(\text{ Nd }_{1.4}\text{ Sr }_{1.6}\text{ Mn }_{2}\text{ O }_{7}\). J. Alloys Compd. 695, 1854–1858 (2017)

    Google Scholar 

  19. S. Hcini, M. Boudard, S. Zemni, M. Oumezzine, Effect of Fe-doping on structural, magnetic and magnetocaloric properties of \(\text{ Nd }_{0.67}\text{ Ba }_{0.33}\text{ Mn }_{1-x}\text{ FexO }_{3}\) manganites. Ceram. Int. 40(10), 16041–16050 (2014)

    Google Scholar 

  20. A. Jerbi, A. Krichene, N. Chniba-Boudjada, W. Boujelben, Magnetic and magnetocaloric study of manganite compounds \(\text{ Pr }_{0.5}\text{ A }_{0.05}\text{ Sr }_{0.45}\text{ MnO }_{3}\) (A= Na and K) and composite. Physica B 477, 75–82 (2015)

    ADS  Google Scholar 

  21. S. Kallel, N. Kallel, O. Pea, M. Oumezzine, Large magnetocaloric effect in Ti-modified \(\text{ La }_{0.70}\text{ Sr }_{0.30}\text{ MnO }_{3}\) perovskite. Mater. Lett. 64(9), 1045–1048 (2010)

    Google Scholar 

  22. S. Kallel, N. Kallel, A. Hagaza, O. Peña, M. Oumezzine, Large magnetic entropy change above 300 K in (\(\text{ La }_{0.56}\text{ Ce }_{0.14})\text{ Sr }_{0.3}\text{ MnO }_{3}\) perovskite. J. Alloys Compd. 492(1–2), 241–244 (2010)

    Google Scholar 

  23. A.B.J. Kharrat, K. Khirouni, W. Boujelben, Structural, magnetic, magnetocaloric and impedance spectroscopy analysis of \(\text{ Pr }_{0.8}\text{ Sr }_{0.2}\text{ MnO }_{3}\) manganite prepared by modified solid-state route. Phys. Lett. A 382(48), 3435–3448 (2018)

    ADS  Google Scholar 

  24. H.B. Khlifa, S. Othmani, I. Chaaba, S. Tarhouni, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Effect of K-doping on the structural, magnetic and magnetocaloric properties of \(\text{ Pr }_{0.8}\text{ Na }_{0.2-x}\text{ K }_{x}\text{ MnO }_{3} (0\le \text{ x }\le 0.15\)) manganites. J. Alloys Compd. 680, 388–396 (2016)

    Google Scholar 

  25. M. Khlifi, M. Bejar, O.E. Sadek, E. Dhahri, M.A. Ahmed, E.K. Hlil, Structural, magnetic and magnetocaloric properties of the lanthanum deficient in \(\text{ La }_{0. 8}\text{ Ca }_{0. 2--x}\square _{x}\text{ MnO }_{3}\) (x = 0–0.20) manganites oxides. J. Alloys Compd. 509, 7410–7415 (2011)

    Google Scholar 

  26. S.E. Kossi, S. Ghodhbane, S. Mnefgui, J. Dhahri, E.K. Hlil, The impact of disorder on magnetocaloric properties in Ti-doped manganites of \(\text{ La }_{0.7}\text{ Sr }_{0.25}\text{ Na }_{0.05}\text{ Mn }_{(1--x)}\text{ Ti }_{x}\text{ O }_{3}\) (\(0\le \text{ x }\le 0.2\)). J. Magn. Magn. Mater. 395, 134–142 (2015)

    ADS  Google Scholar 

  27. V.S. Kumar, R. Chukka, Z. Chen, P. Yang, L. Chen, Strain dependent magnetocaloric effect in \(\text{ La }_{0.67}\text{ Sr }_{0.33}\text{ MnO }_{3}\) thin-films. AIP Adv. 3(5), 052127 (2013)

    ADS  Google Scholar 

  28. K. Laajimi, M. Khlifi, E.K. Hlil, M.H. Gazzah, J. Dhahri, Enhancement of magnetocaloric effect by Nickel substitution in \(\text{ La }_{0.67}\text{ Ca }_{0.33}\text{ Mn }_{0.98}\text{ Ni }_{0.02}\text{ O }_{3}\) manganite oxide. J. Magn. Magn. Mater. 491, 165625 (2019)

    Google Scholar 

  29. M.R. Laouyenne, M. Baazaoui, S. Mahjoub, W. Cheikhrouhou-Koubaa, M. Oumezzine, Enhanced magnetocaloric effect with the high tunability of bismuth in \(\text{ La }_{0.8}\text{ Na }_{0.2}\text{ Mn }_{1-x}\text{ Bi }_{x}\text{ O }_{3}\) (\(0\le \text{ x }\le 0.06)\) perovskite manganites. J. Alloys Compd. 720, 212–220 (2017)

    Google Scholar 

  30. M.R. Laouyenne, M. Baazaoui, K. Farah, E.K. Hlil, M. Oumezzine, A large magnetocaloric effect of \(\text{ La }_{0.8}\text{ Na }_{0.2}\text{ Mn }_{0.97}\text{ Bi }_{0.03}\text{ O }_{3}\) manganite synthesized by pechini Sol-Gel method and compared to the sample synthesized by solid-state route. J. Magn. Magn. Mater. 474, 393–399 (2019)

    ADS  Google Scholar 

  31. M. Li, Z. Wang, Y. Wang, J. Li, D. Viehland, Giant magnetoelectric effect in self-biased laminates under zero magnetic field. Appl. Phys. Lett. 102(8), 082404 (2013)

    ADS  Google Scholar 

  32. L. Lin, C. Gu, J. Zhu, Q. Ye, E. Jiang, W. Wang, M. Liao, Z. Yang, Y. Zeng, J. Sheng, W. Guo, Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode. J. Mater. Sci. 54(10), 7789–7797 (2019)

    ADS  Google Scholar 

  33. S. Mahjoub, M. Baazaoui, R. M’nassri, H. Rahmouni, N.C. Boudjada, M. Oumezzine, Effect of iron substitution on the structural, magnetic and magnetocaloric properties of \(\text{ Pr }_{0. 6}\text{ Car }_{0. 1}\text{ Srr }_{0. 3}\text{ Mnr }_{1-x}\text{ FexOr }_{3}\) (0 \(\leqslant\) x \(\leqslant\)0.075) manganites. J. Alloys Compd. 608, 191–196 (2014)

    Google Scholar 

  34. J. Makni-Chakroun, R. M’nassri, W. Cheikhrouhou-Koubaa, M. Koubaa, N. Chniba-Boudjada, A. Cheikhrouhou, Effect of A-site deficiency on investigation of structural, magnetic and magnetocaloric behaviors for (LaSr)-lacunar manganites. Chem. Phys. Lett. 707, 61–70 (2018)

    ADS  Google Scholar 

  35. A. Marzouki-Ajmi, M. Mansouri, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Structural, magnetic and magnetocaloric properties of vanadium-doped manganites \(\text{ La }_{0.65}\text{ Ca }_{0.35}\text{ Mn }_{1-x}\)V\(_{x}\text{ O }_{3}\) (0\(\leqslant\) x\(\leqslant\) 0.5). J. Magn. Magn. Mater. 433, 209–215 (2017)

    ADS  Google Scholar 

  36. M. Mihalik, J. Vejpravová, J. Rusz, M. Diviš, P. Svoboda, V. Sechovský, M. Mihalik, Anisotropic magnetic properties and specific-heat study of a \(\text{ TbFe }_{2}\text{ Si }_{2}\) single crystal. Phys. Rev. B 70(13), 134405 (2004)

    ADS  Google Scholar 

  37. A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of \(\text{ Sm }_{0.55-x}\text{ Pr }_{x}\text{ Sr }_{0.45}\text{ MnO }_{3}\) (0.1 \(\leqslant\) x \(\leqslant\)0.4) manganites. J. Alloys Compd. 645, 559–565 (2015)

    Google Scholar 

  38. A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, E.K. Hlil, Normal and inverse magnetocaloric effect and short-range ferromagnetic interaction in (Pr, Sm)\(_{0.5}\text{ Sr }_{0.5}\text{ MnO }_{3}\) phase separated manganite. J. Alloys Compd. 688, 1214–1224 (2016)

    Google Scholar 

  39. M. Mohamed, M. Mohamed, M. Khitouni, N. Rammeh, Effects of partial Li-substitution on magnetic and magnetocaloric properties in New perovskite \(\text{ La }_{1-x}\text{ Li }_{x}\text{ SrMn }_{2}\text{ O }_{5+\delta }\) nanoparticles. J. Mol. Struct. 1202, 127187 (2020)

    Google Scholar 

  40. T. Mukherjee, S. Sahoo, R. Skomski, D.J. Sellmyer, C. Binek, Magnetocaloric properties of Co/Cr superlattices. Phys. Rev. B 79(14), 144406 (2009)

    ADS  Google Scholar 

  41. P. Nisha, S.S. Pillai, M.R. Varma, K.G. Suresh, Critical behavior and magnetocaloric effect in \(\text{ La }_{0. 67}\text{ Ca }_{0.33}\text{ Mn }_{1-x}\text{ Cr }_{x}\text{ O }_{3}\) (x = 0.1, 0.25). Solid State Sci. 14(1), 40–47 (2012)

    ADS  Google Scholar 

  42. P. Nordblad, Magnetocaloric materials: strained relations. Nat. Mater. 12(1), 11 (2013)

    ADS  Google Scholar 

  43. M. Oumezzine, A.C. Galca, I. Pasuk, C.F. Chirila, A. Leca, V. Kuncser, L.C. Tanase, A. Kuncser, C. Ghica, M. Oumezzine, Structural, magnetic and magnetocaloric effects in epitaxial \(\text{ La }_{0.67}\text{ Ba }_{0.33}\text{ Ti }_{0.02}\text{ Mn }_{0.98}\text{ O }_{3}\) ferromagnetic thin films grown on 001-oriented SrTiO\(_{3}\) substrates. Dalton Trans. 45(38), 15034–15040 (2016)

    Google Scholar 

  44. E. Oumezzine, S. Hcini, E.K. Hlil, E. Dhahri, M. Oumezzine, Effect of Ni-doping on structural, magnetic and magnetocaloric properties of \(\text{ La }_{0.6}\text{ Pr }_{0.1}\text{ Ba }_{0.3}\text{ Mn }_{1-x}\text{ Ni }_{x}\text{ O }_{3}\) nanocrystalline manganites synthesized by Pechini sol gel method. J. Alloys Compd. 615, 553–560 (2014)

    Google Scholar 

  45. M. Oumezzine, S. Zemni, O. Peña, Room temperature magnetic and magnetocaloric properties of \(\text{ La }_{0.67}\text{ Ba }_{0.33}\text{ Mn }_{0.98}\text{ Ti }_{0.02}\text{ O }_{3}\) perovskite. J. Alloys Compd. 508(2), 292–296 (2010)

    Google Scholar 

  46. M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308(2), 325–340 (2007)

    ADS  Google Scholar 

  47. A. Rostamnejadi, M. Venkatesan, P. Kameli, H. Salamati, J.M.D. Coey, Magnetocaloric effect in \(\text{ La }_{0.67}\text{ Sr }_{0.33}\text{ MnO }_{3}\) manganite above room temperature. J. Magn. Magn. Mater. 323(16), 2214–2218 (2011)

    ADS  Google Scholar 

  48. K.G. Sandeman, Magnetocaloric materials: the search for new systems. Scr. Mater. 67(6), 566–571 (2012)

    Google Scholar 

  49. J. Schwartz, T. Effio, X. Liu, Q.V. Le, A.L. Mbaruku, H.J. Schneider-Muntau, T. Shen, H. Song, U.P. Trociewitz, X. Wang, H.W. Weijers, High field superconducting solenoids via high temperature superconductors. IEEE Trans. Appl. Supercond. 18(2), 70–81 (2008)

    ADS  Google Scholar 

  50. J. Schwartz, C.C. Koch, Y. Zhang, X. Liu, Formation of bismuth strontium calcium copper oxide superconductors. U.S. Patent US9773962B2, 26 Sept 2017

  51. A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N.C. Boudjada, A. Cheikhrouhou, Influence of transition metal doping (Fe, Co, Ni and Cr) on magnetic and magnetocaloric properties of \(\text{ Pr }_{0.7}\text{ Ca }_{0.3}\text{ MnO }_{3}\) manganites. Ceram. Int. 41(8), 10177–10184 (2015)

    Google Scholar 

  52. A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N.C. Boudjada, A. Cheikhrouhou, Effects of partial Mn-substitution on magnetic and magnetocaloric properties in Pr0. 7Ca0. 3Mn0. 95X0. 05O3 (Cr, Ni, Co and Fe) manganites. J. Alloys Compd. 619, 627–633 (2015)

    Google Scholar 

  53. A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N.C. Boudjada, A. Cheikhrouhou, The effect of Co doping on the magnetic and magnetocaloric properties of \(\text{ Pr }_{0.7}\text{ Ca }_{0.3}\text{ Mn }_{1-x}\text{ Co }_{x}\text{ O }_{3}\) manganites. Ceram. Int. 41(6), 7723–7728 (2015)

    Google Scholar 

  54. K. Snini, F.B. Jemaa, M. Ellouze, E.K. Hlil, Structural, magnetic and magnetocaloric investigations in \(\text{ Pr }_{0.67}\text{ Ba }_{0.22}\text{ Sr }_{0.11}\text{ Mn }_{1-x}\text{ Fe }_{x}\text{ O }_{3}\) (0\(\leqslant\) x\(\leqslant\) 0.15) manganite oxide. J. Alloys Compd. 739, 948–954 (2018)

    Google Scholar 

  55. Y. Su, Y. Sui, X. Wang, Y. Wang, X. Liu, X. Wang, F. Pan, Magnetocaloric properties and universal behavior in electron-doped manganite \(\text{ Ca }_{0.88}\text{ Dy }_{0.12}\text{ MnO }_{3}\). J. Alloys Compd. 667, 1–5 (2016)

    Google Scholar 

  56. S. Tarhouni, A. Mleiki, I. Chaaba, H.B. Khelifa, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Structural, magnetic and magnetocaloric properties of Ag-doped \(\text{ Pr }_{0.5}\text{ Sr }_{0.5-x}\)Ag\(_{x}\text{ MnO }_{3}\) manganites (0.0\(\leqslant\) x\(\leqslant\) 0.4). Ceram. Int. 43(1), 133–143 (2017)

    Google Scholar 

  57. R. Thiyagarajan, S. Esakki Muthu, R. Mahendiran, S. Arumugam, Effect of hydrostatic pressure on magnetic and magnetocaloric properties of Mn-site doped perovskite manganites \(\text{ Pr }_{0.6}\text{ Ca }_{0.4}\text{ Mn }_{0.96}\)B\(_{0.04}\text{ O }_{3}\) (B=Co and Cr). J. Appl. Phys. 115(4), 043905 (2014)

    ADS  Google Scholar 

  58. J. Töpfer, J.B. Goodenough, LaMnO\(_{3+\delta }\)Revisited. J. Solid State Chem. 130(1), 117–128 (1997)

    ADS  Google Scholar 

  59. S. Vadnala, S. Asthana, Magnetocaloric effect and critical field analysis in Eu substituted \(\text{ La }_{0.7-x}\)Eu\(_{x}\text{ Sr }_{0.3}\text{ MnO }_{3}\) (x= 0.0, 0.1, 0.2, 0.3) manganites. J. Magn. Magn. Mater. 446, 68–79 (2018)

    ADS  Google Scholar 

  60. E. Tka, K. Cherif, J. Dhahri, Evolution of structural, magnetic and magnetocaloric properties in Sn-doped manganites \(\text{ La }_{0.57}\)Nd\(_{0.1}\text{ Sr }_{0.33}\text{ Mn }_{1-x}\)Sn\(_{x}\text{ O }_{3}\) (x= 0.05-0.3). Appl. Phys. A 116(3), 1181–1191 (2014)

    ADS  Google Scholar 

  61. C.G. Ünlü, Y.E. Tanış, M.B. Kaynar, T. Şimşek, Ş. Özcan, Magnetocaloric effect in La0.7 NdxBa(0.3-x)MnO3 (x= 0, 0.05, 0.1) perovskite manganites. J. Alloys Compd. 704, 58–63 (2017)

    Google Scholar 

  62. Y. Wang, M. Li, D. Hasanyan, J. Gao, J. Li, D. Viehland, Geometry-induced magnetoelectric effect enhancement and noise floor reduction in Metglas/piezofiber sensors. Appl. Phys. Lett. 101(9), 092905 (2012)

    ADS  Google Scholar 

  63. G.F. Wang, Z.R. Zhao, L.R. Li, X.F. Zhang, Effect of non-stoichiometry on the structural, magnetic and magnetocaloric properties of \(\text{ La }_{0.67}\text{ Ca }_{0.33}\text{ Mn }_{1+ \delta }\text{ O }_{3}\) manganites. J. Magn. Magn. Mater. 397, 198–204 (2016)

    ADS  Google Scholar 

  64. M. Zarifi, P. Kameli, M. Mansouri, H. Ahmadvand, H. Salamati, Magnetocaloric effect and critical behavior in \(\text{ La }_{0.8-x}\text{ Pr }_{x}\text{ Sr }_{0.2}\text{ MnO }_{3}\) (x= 0.2, 0.4, 0.5) manganites. Solid State Commun. 262, 20–28 (2017)

    ADS  Google Scholar 

  65. Q. Zhang, S. Thota, F. Guillou, P. Padhan, V. Hardy, A. Wahl, W. Prellier, Magnetocaloric effect and improved relative cooling power in (\(\text{ La }_{0.7}\text{ Sr }_{0.3}\text{ MnO }_{3}\)/SrRuO\(_{3}\)) superlattices. J. Phys. Condens. Matter 23(5), 052201 (2011)

    ADS  Google Scholar 

  66. Y. Zhang, S. Johnson, G. Naderi, M. Chaubal, A. Hunt, J. Schwartz, High critical current density Bi\(_{2}\text{ Sr }_{2}\)CaCu\(_{2}\)O \(_{x}\)/Ag wire containing oxide precursor synthesized from nano-oxides. Supercond. Sci. Technol. 29(9), 095012 (2016)

    ADS  Google Scholar 

  67. Y. Zhang, C.C. Koch, J. Schwartz, Formation of Bi\(_{2}\text{ Sr }_{2}\)CaCu\(_{2}\)O \(_{x}\)/Ag multifilamentary metallic precursor powder-in-tube wires. Supercond. Sci. Technol. 29(12), 125005 (2016)

    ADS  Google Scholar 

  68. Y. Zhang, C.C. Koch, J. Schwartz, Synthesis of Bi\(_{2}\text{ Sr }_{2}\)CaCu\(_{2}\text{ O }_{x}\) superconductors via direct oxidation of metallic precursors. Supercond. Sci. Technol. 27(5), 055016 (2014)

    ADS  Google Scholar 

  69. Y. Zhang, X. Xu, Fe-based superconducting transition temperature modeling through Gaussian process regression (submitted for publication)

  70. Y. Zhang, X. Xu, Yttrium barium copper oxide superconducting transition temperature modeling through Gaussian process regression. Comput. Mater. Sci. 179, 109583 (2020)

    Google Scholar 

  71. Y. Zhang, X. Xu, Disordered MgB\(_{2}\) superconductor critical temperature modeling through regression trees (submitted for publication)

  72. Y. Zhang, X. Xu, Predicting doped MgB2 superconductor critical temperature from lattice parameters using Gaussian process regression. Physica C. (2020). https://doi.org/10.1016/j.physc.2020.1353633

    Article  Google Scholar 

  73. Y. Zhang, X. Xu, Relative cooling power modeling of lanthanum manganites using Gaussian process regression (submitted for publication)

  74. Y. Zhang, X. Xu, Gaussian process modeling of magnetocaloric lanthanum manganites Curie temperature (submitted for publication)

  75. Y. Zhang, X. Xu, Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression (submitted for publication)

  76. Y. Zhang, X. Xu, Machine learning the magnetocaloric effect in manganites from compositions and structural parameters. AIP Adv. 10(3), 035220 (2020)

    ADS  Google Scholar 

  77. Y. Zhang, X. Xu, Predicting the thermal conductivity enhancement of nanofluids using computational intelligence (submitted for publication)

  78. Y. Zhang, X. Xu, Transformation temperature predictions through computational intelligence for NiTi-based shape memory alloys (submitted for publication)

  79. Y. Zhang, X. Xu, Machine learning modeling of lattice constants for half-Heusler alloys. AIP Adv. (2020)

  80. Y. Zhang, X. Xu, Machine learning modeling of metal surface energy (submitted for publication)

  81. Y. Zhang, X. Xu, Machine learning optical band gaps of doped-ZnO films (submitted for publication)

  82. Y. Zhang, X. Xu, Machine learning band gaps of doped-TiO\(_{2}\) photocatalysts (submitted for publication)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, X. Machine learning the magnetocaloric effect in manganites from lattice parameters. Appl. Phys. A 126, 341 (2020). https://doi.org/10.1007/s00339-020-03503-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03503-8

Keywords

Navigation