Skip to main content
Log in

Effect of calcination temperature and cobalt addition on structural, optical and magnetic properties of barium hexaferrite BaFe12O19 nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

(xCo)-BaFe12O19 nanoparticles, with 0 \(\le x \le\) 0.1 wt%, have been prepared using a chemical co-precipitation method and different calcination temperatures (850 °C, 900 °C and 950 °C). The samples were subjected to structural, optical and magnetic studies. X-ray powder diffraction showed the hexagonal crystal structure of (xCo)-BaFe12O19, and the more convenient temperature for the formation of this phase was 950 °C. Transmission electron microscope was used for investigating the morphology as well as the average particle size of the samples. It was found that the average size of all samples ranges between 65 and 90 nm. The energy band gap Eg was determined using UV–Vis spectroscopy. It was noticed that the values of Eg decreased with the addition of cobalt and the increase in the calcination temperature. The M–H curve obtained from vibrating sample magnetometer has been used to study the magnetic behavior. The anisotropy field (Ha), the saturation magnetization (σs), the effective crystalline anisotropy constant (Keff), the remanent magnetization (σr) and squareness ratio (S) for each sample were calculated. The maximum value of coercivity (5087Oe) was found for x = 0 wt% at T = 950 °C which is suitable for magnetic applications, such as the recording equipment and permanent magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Bhattacharya, S. Dhibar, G. Hatui, A. Mandal, T. Das, C.K. Das, Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper: a potential candidate for electromagnetic wave absorbing and energy storage device applications. RSC Adv. 4, 17039–17053 (2014). https://doi.org/10.1039/C4RA00448E

    Article  Google Scholar 

  2. C. Navau, J. Prat-Camps, O. Romero-Isart, J.I. Cirac, A. Sanchez, Long-distance transfer and routing of static magnetic fields. Phys. Rev. Lett. 112, 253901 (2014). https://doi.org/10.1103/PhysRevLett.112.253901

    Article  ADS  Google Scholar 

  3. T. Kaur, S. Kumar, B.H. Bhat, A.K. Srivastava, Enhancement in physical properties of barium hexaferrite with substitution. J. Mater. Res. 30, 2753–2762 (2015). https://doi.org/10.1557/jmr.2015.244

    Article  ADS  Google Scholar 

  4. M. Anbarasu, M. Anandan, E. Chinnasamy, V. Gopinath, K. Balamurugan, Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 135, 536–539 (2015). https://doi.org/10.1016/j.saa.2014.07.059

    Article  ADS  Google Scholar 

  5. H.A. Patel, J. Byun, C.T. Yavuz, Arsenic removal by magnetic nanocrystalline barium hexaferrite, in Nanotechnology for Sustainable Development, ed. by M.S. Diallo, N.A. Fromer, M.S. Jhon (Springer, Cham, 2014), pp. 163–169. https://doi.org/10.1007/978-3-319-05041-6_13

    Chapter  Google Scholar 

  6. D. Lisjak, K. Bobzin, K. Richardt, M. Bégard, G. Bolelli, L. Lusvarghi, A. Hujanen, P. Lintunen, M. Pasquale, E. Olivetti, M. Drofenik, T. Schläfer, Preparation of barium hexaferrite coatings using atmospheric plasma spraying. J. Eur. Ceram. Soc. 29, 2333–2341 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.01.028

    Article  Google Scholar 

  7. Z. Mosleh, P. Kameli, M. Ranjbar, H. Salamati, Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexaferrite nanoparticles. Ceram. Int. 5, 7279–7284 (2014). https://doi.org/10.1016/j.ceramint.2013.12.068

    Article  Google Scholar 

  8. H. Li, J. Huang, Q. Li, X. Su, Preparation of barium ferrite films with high Fe/Ba ratio by sol–gel method. J. Sol–Gel. Sci. Technol. 52, 309 (2009). https://doi.org/10.1007/s10971-009-2052-9

    Article  Google Scholar 

  9. V.K. Sankaranarayanan, D.C. Khan, Mechanism of the formation of nanoscale M-type barium hexaferrite in the citrate precursor method. J. Magn. Magn. Mater. 153, 337–346 (1996). https://doi.org/10.1016/0304-8853(95)00537-4

    Article  ADS  Google Scholar 

  10. X. Liu, J. Wang, L.-M. Gan, S.-C. Ng, J. Ding, An ultrafine barium ferrite powder of high coercivity from water-in-oil microemulsion. J. Magn. Magn. Mater. 184, 344–354 (1998). https://doi.org/10.1016/S0304-8853(97)01141-4

    Article  ADS  Google Scholar 

  11. G. Mendoza-Suárez, K.K. Johal, H. Mancha-Molinar, J.I. Escalante-Garcı́a, M.M. Cisneros-Guerrero, Magnetic properties of Zn-Sn-substituted Ba-ferrite powders prepared by ball milling. Mater. Res. Bull. 36, 2597–2603 (2001). https://doi.org/10.1016/S0025-5408(01)00751-6

    Article  Google Scholar 

  12. A. González-Angeles, G. Mendoza-Suárez, A. Grusková, I. Tóth, V. Jančárik, M. Papánová, J.I. Escalante-Garcı́a, Magnetic studies of NiSn-substituted barium hexaferrites processed by attrition milling. J. Magn. Magn. Mater. 270, 77–83 (2004). https://doi.org/10.1016/j.jmmm.2003.08.001

    Article  ADS  Google Scholar 

  13. J. Kreisel, H. Vincent, F. Tasset, M. Paté, J.P. Ganne, An investigation of the magnetic anisotropy change in BaFe12 − 2xTixCoxO19 single crystals. J. Magn. Magn. Mater. 224, 17–29 (2001). https://doi.org/10.1016/S0304-8853(00)01355-X

    Article  ADS  Google Scholar 

  14. G.B. Teh, S. Nagalingam, D.A. Jefferson, Preparation and studies of Co(II) and Co(III)-substituted barium ferrite prepared by sol–gel method. Mater. Chem. Phys. 101, 158–162 (2007). https://doi.org/10.1016/j.matchemphys.2006.03.008

    Article  Google Scholar 

  15. A. Ghasemi, A. Morisako, Static and high frequency magnetic properties of Mn–Co–Zr substituted Ba-ferrite. J. Alloy. Compd. 456, 485–491 (2008). https://doi.org/10.1016/j.jallcom.2007.02.101

    Article  Google Scholar 

  16. S. Singhal, K. Kaur, S. Jauhar, S. Bhukal, S. Bansal, Structural and magnetic properties of BaCoxFe12-xO19 (x = 0.2, 0.4, 0.6, &1. 0) nanoferrites synthesized via citrate sol–gel method. World J. Condens. Matter Phys 1, 101–104 (2011). https://doi.org/10.4236/wjcmp.2011.13016

    Article  ADS  Google Scholar 

  17. S. Kumar, S. Supriya, L.K. Pradhan, R. Pandey, M. Kar, Grain size effect on magnetic and dielectric properties of barium hexaferrite (BHF). Phys. B 1(2019), 411908 (2019). https://doi.org/10.1016/j.physb.2019.411908

    Article  Google Scholar 

  18. S. Anand, S. Pauline, V. Maria Vinosel, M. Asisi Janifer, Structural rietveld refinement and vibrational study of M-type BaFe12O19 nanoparticles. Mater. Today Proc. 8(2019), 476–483 (2019). https://doi.org/10.1016/j.matpr.2019.02.141

    Article  Google Scholar 

  19. S. Ashima, A. Sanghi, Agarwal, Reetu, Rietveld refinement, electrical properties and magnetic characteristics of Ca–Sr substituted barium hexaferrites. J. Alloy. Compd. 513, 436–444 (2012). https://doi.org/10.1016/j.jallcom.2011.10.071

    Article  Google Scholar 

  20. S.B. Waje, M. Hashim, W.D. Wan Yusoff, Z. Abbas, Sintering temperature dependence of room temperature magnetic and dielectric properties of Co0.5Zn0.5Fe2O4 prepared using mechanically alloyed nanoparticles. J. Magn. Magn. Mater. 322, 686–691 (2010). https://doi.org/10.1016/j.jmmm.2009.10.041

    Article  ADS  Google Scholar 

  21. D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, S. Nemrava, A.S. Semisalova, D.M. Galimov, S.A. Gudkova, I.V. Chumanov, L.I. Isaenko, R. Niewa, Growth, structural and magnetic characterization of Co- and Ni-substituted barium hexaferrite single crystals. J. Alloy. Compd. 628, 480–484 (2015). https://doi.org/10.1016/j.jallcom.2014.12.124

    Article  Google Scholar 

  22. R. Topkaya, I. Auwal, A. Baykal, Effect of temperature on magnetic properties of BaYxFe12 − xO19 hexaferrites. Ceram. Int. 42, 16296–16302 (2016). https://doi.org/10.1016/j.ceramint.2016.07.178

    Article  Google Scholar 

  23. S.S.S. Afghahi, M. Jafarian, Y. Atassi, Microstructural and magnetic studies on BaMgxZnxX2xFe12 − 4xO19 (x = Zr, Ce, Sn) prepared via mechanical activation method to act as a microwave absorber in X-band. J. Magn. Magn. Mater. 406, 184–191 (2016). https://doi.org/10.1016/j.jmmm.2016.01.020

    Article  ADS  Google Scholar 

  24. V.V. Soman, V.M. Nanoti, D.K. Kulkarni, Dielectric and magnetic properties of Mg–Ti substituted barium hexaferrite. Ceram. Int. 39, 5713–5723 (2013). https://doi.org/10.1016/j.ceramint.2012.12.089

    Article  Google Scholar 

  25. S.M. El-Sayed, T.M. Meaz, M.A. Amer, H.A. El Shersaby, Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite. Phys. B 426, 137–143 (2013). https://doi.org/10.1016/j.physb.2013.06.026

    Article  ADS  Google Scholar 

  26. N.I. Sulaiman, M.A. Bakar, N.H.H.A. Bakar, M.H. Hussin, Sol-gel synthesis of barium hexaferrite and their catalytic application in methyl ester synthesis. IOP Conf Ser Mater Sci Eng 509, 012103 (2019). https://doi.org/10.1088/1757-899X/509/1/012103

    Article  Google Scholar 

  27. H. Cui, Y. Liu, W. Ren, Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature sol–gel synthesis of nearly monodispersed iron oxide nanoparticles. Adv. Powder Technol. 24, 93–97 (2013). https://doi.org/10.1016/j.apt.2012.03.001

    Article  Google Scholar 

  28. A. Lassoued, B. Dkhil, A. Gadri, S. Ammar, Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results Phys. 7, 3007–3015 (2017). https://doi.org/10.1016/j.rinp.2017.07.066

    Article  ADS  Google Scholar 

  29. A. Zielińska-Jurek, Z. Bielan, S. Dudziak, I. Wolak, Z. Sobczak, T. Klimczuk, G. Nowaczyk, J. Hupka, Design and application of magnetic photocatalysts for water treatment. The effect of particle charge on surface functionality. Catalysts 7, 360 (2017). https://doi.org/10.3390/catal7120360

    Article  Google Scholar 

  30. M. Hafeez, R. Shaheen, B. Akram, Z. Abdin, S. Haq, S. Mahsud, S. Ali, R.T. Khan, Green Synthesis of cobalt oxide nanoparticles for potential biological applications. Mater. Res. Express. 1, 1 (2020). https://doi.org/10.1088/2053-1591/ab70dd

    Article  Google Scholar 

  31. K. Pradeev Raj, K. Sadaiyandi, A. Kennedy, S. Sagadevan, Z.Z. Chowdhury, M.R.B. Johan, F.A. Aziz, R.F. Rafique, R. Thamiz Selvi, R. Rathina Bala, Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanosc. Res. Lett. 13, 1 (2018). https://doi.org/10.1186/s11671-018-2643-x

    Article  Google Scholar 

  32. S. Anjum, A. Seher, Z. Mustafa, Effect of La3 + ions substituted M-type barium hexa-ferrite on magnetic, optical, and dielectric properties. Appl. Phys. A 125, 664 (2019). https://doi.org/10.1007/s00339-019-2937-6

    Article  ADS  Google Scholar 

  33. B.S. Rema Devi, R. Raveendran, A.V. Vaidyan, Synthesis and characterization of Mn2 + -doped ZnS nanoparticles. Pramana J. Phys. 68, 679–687 (2007). https://doi.org/10.1007/s12043-007-0068-7

    Article  ADS  Google Scholar 

  34. T. Kaur, S. Kumar, B.H. Bhat, B. Want, A.K. Srivastava, Effect on dielectric, magnetic, optical and structural properties of Nd–Co substituted barium hexaferrite nanoparticles. Appl. Phys. A 119, 1531–1540 (2015). https://doi.org/10.1007/s00339-015-9134-z

    Article  ADS  Google Scholar 

  35. H.C. Fang, Z. Yang, C.K. Ong, Y. Li, C.S. Wang, Preparation and magnetic properties of (Zn–Sn) substituted barium hexaferrite nanoparticles for magnetic recording. J. Magn. Magn. Mater. 187, 129–135 (1998). https://doi.org/10.1016/S0304-8853(98)00139-5

    Article  ADS  Google Scholar 

  36. A. Demir, S. Güner, Y. Bakis, S. Esir, A. Baykal, Magnetic and optical properties of Mn1 − xZnxFe2O4 nanoparticles. J. Inorg. Organomet. Polym. 24, 729–736 (2014). https://doi.org/10.1007/s10904-014-0032-1

    Article  Google Scholar 

  37. H. Kojima, Chapter 5 Fundamental properties of hexagonal ferrites with magnetoplumbite structure, in Handbook of Ferromagnetic Materials. Elsevier, 1982, pp. 305–391. https://doi.org/10.1016/S1574-9304(05)80091-4

  38. T. Kaur, B. Kaur, B.H. Bhat, S. Kumar, A.K. Srivastava, Effect of calcination temperature on microstructure, dielectric, magnetic and optical properties of Ba0.7La0.3Fe11.7Co0.3O19 hexaferrites. Phys. B 456, 206–212 (2015). https://doi.org/10.1016/j.physb.2014.09.003

    Article  ADS  Google Scholar 

  39. R.C. Alange, P.P. Khirade, S.D. Birajdar, A.V. Humbe, K.M. Jadhav, Structural, magnetic and dielectrical properties of Al–Cr Co-substituted M-type barium hexaferrite nanoparticles. J. Mol. Struct. 1106, 460–467 (2016). https://doi.org/10.1016/j.molstruc.2015.11.004

    Article  ADS  Google Scholar 

  40. M.G. Shalini, S.C. Sahoo, Magnetic studies of cobalt doped barium hexaferrite nanoparticles prepared by modified sol-gel method. AIP Conf. Proc. 1728, 020445 (2016). https://doi.org/10.1063/1.4946496

    Article  Google Scholar 

  41. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater Sci. 57, 1191–1334 (2012). https://doi.org/10.1016/j.pmatsci.2012.04.001

    Article  Google Scholar 

  42. G. Mendoza-Suárez, M.C. Cisneros-Morales, M.M. Cisneros-Guerrero, K.K. Johal, H. Mancha-Molinar, O.E. Ayala-Valenzuela, J.I. Escalante-Garcı́a, Influence of stoichiometry and heat treatment conditions on the magnetic properties and phase constitution of Ba-ferrite powders prepared by sol–gel. Mater. Chem. Phys. 77, 796–801 (2003). https://doi.org/10.1016/S0254-0584(02)00141-4

    Article  Google Scholar 

  43. R. Safi, A. Ghasemi, R. Shoja-Razavi, A novel approach for enhancement of coercivity in magnetic cobalt ferrite nanocrystal without applying post annealing. Ceram. Int. 42, 17357–17365 (2016). https://doi.org/10.1016/j.ceramint.2016.08.033

    Article  Google Scholar 

  44. H.-F. Yu, K.-C. Huang, Effects of pH and citric acid contents on characteristics of ester-derived BaFe12O19 powder. J. Magn. Magn. Mater. 260, 455–461 (2003). https://doi.org/10.1016/S0304-8853(02)01389-6

    Article  ADS  Google Scholar 

  45. M.G. Naseri, E.B. Saion, H.A. Ahangar, A.H. Shaari, M. Hashim, Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. J. Nanomater. 2010, 75:1–75:8 (2010). https://doi.org/10.1155/2010/907686

    Article  Google Scholar 

  46. B.D. Cullity, C.D. Graham, Introduction to magnetic materials (Wiley, New York, 2011)

    Google Scholar 

  47. M. Kishimoto, S. Kitahata, M. Amemiya, Effect of magnetic anisotropy of Ba-ferrite particles on squareness of perpendicular recording media. J. Appl. Phys. 61, 3875–3877 (1987). https://doi.org/10.1063/1.338626

    Article  ADS  Google Scholar 

  48. E.A. Setiadi, M. Yunus, N. Nababan, S. Simbolon, C. Kurniawan, S. Humaidi, P. Sebayang, M. Ginting, The effect of temperature on synthesis of MgFe2O4based on natural iron sand by Co-precipitation method as adsorbent Pb ion. J. Phys: Conf. Ser. 985, 012046 (2018). https://doi.org/10.1088/1742-6596/985/1/012046

    Article  Google Scholar 

  49. I.A. Auwal, H. Güngüneş, S. Güner, S.E. Shirsath, M. Sertkol, A. Baykal, Structural, magneto-optical properties and cation distribution of SrBixLaxYxFe12 − 3xO19 (0.0 ≤ x≤0.33) hexaferrites. Mater. Res. Bull. 80, 263–272 (2016). https://doi.org/10.1016/j.materresbull.2016.03.028

    Article  Google Scholar 

  50. H. Luo, B.K. Rai, S.R. Mishra, V.V. Nguyen, J.P. Liu, Physical and magnetic properties of highly aluminum doped strontium ferrite nanoparticles prepared by auto-combustion route. J. Magn. Magn. Mater. 324, 2602–2608 (2012)

    Article  ADS  Google Scholar 

  51. S. Anjum, M. Shahid Rafique, M. Khaleeq-ur-Rahman, K. Siraj, A. Usman, S.I. Hussain, S. Naseem, Investigation of induced parallel magnetic anisotropy at low deposition temperature in Ba-hexaferrites thin films. J. Magn. Magn. Mater. 324, 711–716 (2012). https://doi.org/10.1016/j.jmmm.2011.08.059

    Article  ADS  Google Scholar 

  52. I.A. Auwal, A. Baykal, H. Güngüneş, S.E. Shirsath, Structural investigation and hyperfine interactions of BaBixLaxFe12 − 2xO19 (00 ≤ x≤05) hexaferrites. Ceram. Int. 42, 3380–3387 (2016). https://doi.org/10.1016/j.ceramint.2015.10.132

    Article  Google Scholar 

Download references

Acknowledgements

This research was accomplished in the Specialized Materials Science Lab and Advanced Nanomaterials Research Lab, Physics Department, Faculty of Science, Beirut Arab University, Lebanon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khulud Habanjar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habanjar, K., Shehabi, H., Abdallah, A.M. et al. Effect of calcination temperature and cobalt addition on structural, optical and magnetic properties of barium hexaferrite BaFe12O19 nanoparticles. Appl. Phys. A 126, 402 (2020). https://doi.org/10.1007/s00339-020-03497-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03497-3

Keywords

Navigation