Skip to main content
Log in

Application of fundamental parameter approach using integrated backscattering intensity for X-ray fluorescence analysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The fundamental parameter (FP) approach, in which the both intensities of coherently (Rayleigh) and incoherently (Compton) scattered primary radiation are added individually to estimate the ‘dark matrix’ of the analyzed specimen, is considered successful, especially for in situ element determination. However, the current energy resolution of the energy-dispersive X-ray fluorescence (EDXRF) spectrometer system is not yet high enough for two scattered peaks to appear without overlapping in general, and separating two peaks with each other yields reduced accuracy of analysis. The FP approach with only the integrated backscattering intensity added in place of both of the individual backscatter intensities is proposed for X-ray fluorescence (XRF) analysis of unknown specimen. The present results show that the weight fraction deviations are below 5%, which is much lower than the maximum error 10.79% of the results for four selected samples by using the previous BFP. Our determination of elements reveals Na, Mg, Al, and Si as hypothetical elements representing compositions SiO2 and Al2O3, namely the main compositions of the gangue for the geological samples as a mineral ore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zhang, D. Sun, J. Luo et al., Appl. Phys. A 125, 726 (2019)

    Article  ADS  Google Scholar 

  2. I.A. Al-Nasr, I.J. Jabr, K.A. Al-Saleh et al., Appl. Phys. A 43, 71 (1987)

    Article  ADS  Google Scholar 

  3. A. Bustamante, R. Cesareo, A. Brunetti et al., Appl. Phys. A 113, 1065 (2013)

    Article  ADS  Google Scholar 

  4. S. Sfarra, C. Ibarra-Castanedo, S. Ridolfi et al., Appl. Phys. A 115, 1041 (2014)

    Article  ADS  Google Scholar 

  5. A. Gianoncelli, G. Kourousias, Appl. Phys. A 89, 857 (2007)

    Article  ADS  Google Scholar 

  6. R. Arletti, G. Vezzalini, S. Quartieri et al., Appl. Phys. A 92, 127 (2008)

    Article  ADS  Google Scholar 

  7. K.K. Nielson, Anal. Chem. 49, 641 (1977)

    Article  Google Scholar 

  8. D. Wegrzynek, A. Markowicz, E. Chinea, X-Ray Spectrom. 32, 119 (2003)

    Article  ADS  Google Scholar 

  9. V.D. Hodoroaba, V. Rackwitz, Anal. Chem. 86, 6858 (2014)

    Article  Google Scholar 

  10. Y. Sasaki, K. Hirokawa, Appl. Phys. A 50, 397 (1990)

    Article  ADS  Google Scholar 

  11. L. Bertrand, L. Robinet, M. Thoury et al., Appl. Phys. A 106, 377 (2012)

    Article  ADS  Google Scholar 

  12. I. Nakai, Y. Abe, Appl. Phys. A 106, 279 (2012)

    Article  ADS  Google Scholar 

  13. E. Arizio, E.F. Orsega, G. Sommariva et al., Appl. Phys. A 111, 733 (2013)

    Article  ADS  Google Scholar 

  14. M.K. Donais, J. Van Pevenage, A. Sparks et al., Appl. Phys. A 122, 1050 (2016)

    Article  ADS  Google Scholar 

  15. F. Casadio, V. Rose, Appl. Phys. A 111, 1 (2013)

    Article  ADS  Google Scholar 

  16. R. Tertian, F. Claisse, Principles of Quantitative X-Ray Fluorescence Analysis (Heyden, London, 1982)

    Google Scholar 

  17. G.R. Lachance, F. Claisse, Quantitative X-Ray Fluorescence Analysis (Wiley, New York, 1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Son Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, HS., Ri, C. & Jong, YS. Application of fundamental parameter approach using integrated backscattering intensity for X-ray fluorescence analysis. Appl. Phys. A 126, 318 (2020). https://doi.org/10.1007/s00339-020-03493-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03493-7

Keywords

Navigation