Skip to main content
Log in

Synthesis, characterization of NdCoO3 perovskite and its uses as humidity sensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The perovskite NdCoO3 nanoparticles were prepared by the citrate auto combustion method. The synthesized powders were characterized by XRD, HRTEM, EDAX, and AFM analyses. The XRD pattern of NdCoO3 confirms the orthorhombic perovskite structure with an average crystallite size of 14.46 nm. The EDAX data indicate that the precursors have fully undergone the chemical reaction to form the predictable composition of the investigated sample. The magnetic hysteresis properties were carried out at room temperature and 100 K. At low temperature, the coericivity of the investigated samples is approximately equal to 22.644 G which is approximately 2.5 greater than its value at room temperature. The investigated sample shows paramagnetic behavior at both temperatures. This behavior can be attributed to the change of electron configurations and ligand field states. The ferroelectric nature was identified by taking the P–E loops at various applied voltages. The spin state of cobalt ions plays an important role in the magnetic properties and humidity-sensing behavior. The humidity-sensing behavior of the prepared sample was studied in a wide range of working humidity (11–97% RH) and testing frequency (100 Hz–100 kHz). The proposed humidity sensor was evaluated in terms of hysteresis, repeatability, and recovery time. Based on the obtained data the optimum testing frequency was chosen to be 100 Hz. The proposed sensor shows a very fast response of 3 s for low humidity. The humidity sensor exhibits good sensitivity over a middle RH range (11–43%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ebtesam E. Ateia, M.K. Abdelamksoud, M.A. Rizk, Improvement of the physical properties of novel (1 − x) CoFe2O4 + (x)LaFeO3 for technological applications. J. Mater. Sci. Mater. Electron. 28, 16547–16553 (2017)

    Google Scholar 

  2. W. Haron, T. Thaweechai, W. Wattanathana, A. Laobuthee, H. Manaspiya, C. Veranitisagul, N. Koonsaeng, Structural Characteristics and Dielectric Properties of La1-xCoxFeO3 and LaFe1-xCoxO3 Synthesized via Metal Organic Complexes. Energy Procedia 34, 791–800 (2013)

    Google Scholar 

  3. M. Imad, A. Fujimori, Y. Tokura, Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998)

    ADS  Google Scholar 

  4. P.M. Raccah, J.B. Goodenough, First-order localized-electron ⇆ Collective-electron transition in LaCoO3. Phys. Rev. 155, 932 (1967)

    ADS  Google Scholar 

  5. S. Yamaguchi, Y. Okimoto, H. Taniguchi, Y. Tokura, Spin-state transition and high-spin polarons in LaCoO3. Phys. Rev. B 53, 2926 (1996)

    ADS  Google Scholar 

  6. M.A.S. Rodriguez, J.B. Goodenough, Magnetic and transport properties of the system La1-xSrxCoO3-δ (0 < x ≤ 0.50). J. Solid. State Chem. 118, 323 (1995)

    ADS  Google Scholar 

  7. K. Conder, A. Podlesnyak, E. Pomjakushina, M. Stingaciu, Layered cobaltites: synthesis, oxygen nonstoichiometry, transport and magnetic properties. Acta Phys. Pol. A 111, 7–14 (2007)

    ADS  Google Scholar 

  8. O. Pe˜na, M. Bahout, K. Ghanimi, P. Duran, D. Gutierrez, C. Moure, Spin reversal and ferrimagnetism in (Gd, Ca)MnO3. J. Mater. Chem. 12, 2480–2485 (2002)

    Google Scholar 

  9. M.A. Ahmed, M.S. Selim, M.M. Arman, Novel multiferroic La0.95Sb0.05FeO3 orthoferrite. Mater. Chem. Phys. 129, 705–712 (2011)

    Google Scholar 

  10. P.G. Su, C.F. Chang, J Taiwan Inst. Chem. Eng. 87, 36 (2018)

    Google Scholar 

  11. N.T. Shelke, D.J. Late, Sens Actuators A Phys 295, 160 (2019)

    Google Scholar 

  12. N. Gao, H.Y. Li, W. Zhang, Y. Zhang, Y. Zeng, H. Zhixiang, J. Liu, J. Jiang, L. Miao, F. Yi, H. Liu, Sens. Actuators B Chem. 293, 129 (2019)

    Google Scholar 

  13. Y. Zhao, B. Yang, J. Liu, Sens. Actuators B Chem. 271, 256 (2018)

    Google Scholar 

  14. C. Chen, X. Wang, M. Li, Y. Fan, R. Sun, Sens. Actuators B Chem. 255, 1569 (2018)

    Google Scholar 

  15. S. Jagtap, S. Rane, S. Arbuj, S. Rane, S. Gosavi, Microelectron. Eng. 187–188, 1 (2018)

    Google Scholar 

  16. A.S. Hassan, V. Juliet, C.J.A. Raj, Mater. Today Proc. 5, 10728 (2018)

    Google Scholar 

  17. Y. Zhu, J. Chen, H. Li, Y. Zhu, J. Xu, Sens. Actuators B Chem. 193, 320 (2014)

    Google Scholar 

  18. H. Jeong, Y. Noh, D. Lee, Ceram. Int. 45, 985 (2019)

    Google Scholar 

  19. R. Zhang, J. Hu, Z. Han, M. Zhao, Z. Wu, Y. Zhang, H. Qin, J. Rare Earths 28, 591 (2010)

    Google Scholar 

  20. C. Tealdi, M.S. Islam, C.A.J. Fisher, L. Malavasi, G. Flor, Prog. Solid State Chem. 35, 491 (2007)

    Google Scholar 

  21. I.A. Abdel-Latif, M.M. Rahman, S.B. Khan, Results Phys. 8, 578 (2018)

    ADS  Google Scholar 

  22. D. Zhang, H. Chang, P. Li, R. Liu, Q. Xue, Sens. Actuators B Chem. 225, 233 (2016)

    Google Scholar 

  23. C. Lang, Y. Liu, K. Cao, Y. Li, S. Qu, Sens. Actuators B Chem. 290, 23 (2019)

    Google Scholar 

  24. M.A. Ahmed, N.G. Imam, S.I. El-Dek, K.M. Safaa, Fluorescence and spectroscopic characterization of multiferroic quantum dots of La:BiFeO. J. Supercond. Nov. Magn. 28, 2417–2424 (2015)

    Google Scholar 

  25. S. Tsubouchi, T. Kyômen, M. Itoh, M. Oguni, Electric, magnetic, and calorimetric properties and phase diagram of Pr1−xCaxCoO3 (0 < ~x < ~0.55). Phys. Rev. B 69, 144406 (2004)

    ADS  Google Scholar 

  26. K. Omri, F. Alharbi, Synthesis and effect of temperature on morphological and photoluminescence properties of TiO2 nanoparticles. Appl. Phys. A 125, 696 (2019)

    ADS  Google Scholar 

  27. Y. Guo, T. Wang, D. Shi, P. Xiao, Q. Zheng, C. Xu, K. Lam, D. Lin, J. Mater. Sci. Mater. Electron. 28, 5531–5547 (2017)

    Google Scholar 

  28. N.B. Ivanova, N.V. Kazak, C.R. Michel, A.D. Balaev, S.G. Ovchinnikov, A.D. Vasil’ev, N.V. Bulina, E.B. Panchenko, Effect of strontium and barium doping on the magnetic state and electrical conductivity of GdCoO3. Phys. Solid State 49, 1498 (2007)

    ADS  Google Scholar 

  29. Z. Jirák, J. Hejtmánek, K. Knížek, M. Veverka, Electrical resistivity and thermopower measurements of the hole- and electron-doped cobaltites LnCoO3. Phys. Rev. B 78, 014432 (2008)

    ADS  Google Scholar 

  30. A. Muñoz, J.A. Alonso, M.J. Martínez-Lope, E. Morán, R. Escamilla, Synthesis and study of the crystallographic and magnetic structure of SeCoO3. Phys. Rev. B 73, 104442 (2006)

    ADS  Google Scholar 

  31. M. Johnsson, P. Lemmens, M. Johnsson, P. Lemmens, Handbook magnetic advanced magnetic materials (Wiley, Chichester, 2007)

    Google Scholar 

  32. Q. Sun, W.J. Yin, Thermodynamic stability trend of cubic perovskites. J. Am. Chem. Soc. 139, 14905–14908 (2017)

    Google Scholar 

  33. H. Kronmller, S. Parkin, M. Johnsson, P. Lemmens, Handbook of magnetism and advanced magnetic materials (Wiley, Hoboken, NJ, 2012)

    Google Scholar 

  34. C. Tealdi, L. Malavasi, F. Gozzo, C. Ritter, M.C. Mozzati, G. Chiodelli, G. Flor, Chem. Mater. 19, 4741–4750 (2007)

    Google Scholar 

  35. K. Baerner, Thermodynamic stability trend of cubic perovskites. J. Am. Chem. Soc. 139, 14905–14908 (2017)

    Google Scholar 

  36. N. Karaman, A. Bayri, S. Ekmekçi, An energy competition of Co3+ and Co4+ ions during spin state transition in Ca3Co4O9 complex J of Phys. Conf Ser 667, 012008 (2016)

    Google Scholar 

  37. B. Sathyamoorthy, A. Raja, G. Chandrasekaran, Observation of magneto-electric coupling in Sm0.5Sr0.5CoO3 nanoparticles. J. Mater. Sci 29, 5098–5109 (2018)

    Google Scholar 

  38. Z. Ali, I. Ahmad, B. Amin, M. Maqbool, G. Murtaza, I. Khan, M.J. Akhtar, F. Ghaffor, Theoretical studies of structural and magnetic properties of cubic perovskites PrCoO3 and NdCoO3. Physica. B 406, 3800–3804 (2011)

    ADS  Google Scholar 

  39. K. Asai, P. Gehring, H. Chou, G. Shirane, Temperature-induced magnetism in LaCoO3 Phys. Rev. B 40, 10982–10985 (1989)

    Google Scholar 

  40. I.A. Nekrasov, S.V. Streltsov, M.A. Korotin, V.I. Anisimov, Phys. Rev. B. 68, 235113 (2003)

    ADS  Google Scholar 

  41. E. Schmidbauer, R. Keller, Magnetic properties and rotational hysteresis of Fe - 3O4 and & #x03B1;-Fe2O3 particles 500 nm in diameter. J. Magn. Magn. Mater. 152, 99–108 (1996)

    ADS  Google Scholar 

  42. E.E. Ateia, A.A. El-Bassuony, G. Abdelatif, F.S. Soliman, Novelty characterization and enhancement of magnetic properties of Co and Cu nanoferrites. J. Mater. Sci. Mater. Electron. 28, 241–249 (2017)

    Google Scholar 

  43. A. Fondado, M.P. Breijo, C. Rey-Cabezudo, M.S. Andújar, J. Mira, J. Rivas, M.A.S. Rodríguez, Synthesis, characterization, magnetism and transport properties of Nd1−xSrxCoO3 perovskites. J. Alloys Comp. 323, 444–447 (2001)

    Google Scholar 

  44. K. Omri, A. Alyamani, L. El Mir, Surface morphology, microstructure and electrical properties of Ca–doped ZnO thin flms. J. Mater. Sci. Mater. Electron. 30, 16606–16612 (2019)

    Google Scholar 

  45. J.Q. Yan, J.S. Zhou, J.B. Goodenough, Bond-length fluctuations and the spin-state transition in LCoO3 (L = La, Pr, and Nd) Phys. Rev. B. 69, 134409 (2004)

    Google Scholar 

  46. A.S. Pawbake, R. Waykar, D.J. Late, S.R. Jadkar, A.C.S. Appl, Mater. Interfaces. 5, 3359–3365 (2016)

    Google Scholar 

  47. V.K. Tomer, S. Duhan, A.K. Sharma, R. Malik, S.P. Nehra, S. Devi, Colloids Surf. A 483, 121 (2015)

    Google Scholar 

  48. S. Yu, H. Zhang, C. Chen, C. Lin, Sens. Actuators B Chem. 287, 526 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebtesam E. Ateia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateia, E.E., Arman, M.M. & Morsy, M. Synthesis, characterization of NdCoO3 perovskite and its uses as humidity sensor. Appl. Phys. A 125, 883 (2019). https://doi.org/10.1007/s00339-019-3168-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3168-6

Navigation