Skip to main content
Log in

ZnFe2O4/CuO core–shell structured nanoparticles: synthesis, structural and magnetic properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Synthesis of core/shell structured ZnFe2O4/CuO nanoparticles with varying core diameter and different weight percentage of CuO phase [(1−x) ZnFe2O4/x CuO: x = 0.15, 0.30, 0.45 and 0.60] using double stage standard chemical co-precipitation method has been reported in this article. For first four samples only the diameter of core was varied and for other four samples only the weight percentage of CuO phase was varied. The existence of both cubic spinel ZnFe2O4 phase along with monoclinic CuO phase was verified by X-ray patterns recorded at room temperature. The average core diameter was in between 8 and 13 nm as estimated using Scherrer’s formula and further verified by HRTEM images. A reduction in lattice parameter with increasing core thickness and also with increasing CuO phase was observed. A notable enhancement in coercivity and saturation magnetization were observed in field cooled (5 T) hysteresis loops obtained at 5 K for the first four varying core diameter core–shell structured nanoparticles in comparison to bare zinc ferrite nanoparticles of almost same size. A decreasing trend in coercivity and saturation magnetization was also noticed in low temperature hysteresis loops for higher CuO content samples. A considerable improvement in blocking temperature (TB) as well as Néel temperature (TN) for all the different core diameter samples were also found in M(T) protocols. Both blocking temperature and Néel temperature decreased for increasing CuO content in composite nanoparticles. The room temperature M(H) plots exhibited superparamagnetic nature with insignificant coercivity and negligible remanence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Prakash, G.V.M. Williams, J. Kennedy, S. Rubanov, J. Alloys Compd. 667, 255–261 (2016)

    Article  Google Scholar 

  2. S. Khamlich, Z. Abdullaeva, J.V. Kennedy, M. Maaza, Appl. Surf. Sci. 405, 329–336 (2017)

    Article  ADS  Google Scholar 

  3. T. Prakash, G.V.M. Williams, J. Kennedy, S. Rubanov, J. Appl. Phys. 120, 123905 (2016)

    Article  ADS  Google Scholar 

  4. G.V.M. Williams, T. Prakash, J. Kennedy, S.V. Chong, S. Rubanov, J. Magn. Magn. Mater. 460, 229–233 (2018)

    Article  ADS  Google Scholar 

  5. K. Chakrabarti, B. Sarkar, V.D. Ashok, K. Das, S.S. Chaudhuri, S.K. De, Nanotechnology 24, 505711 (2013)

    Article  Google Scholar 

  6. M.P. Ghosh, S. Mukherjee, J. Am. Ceram. Soc. 00, 1–12 (2019)

    Google Scholar 

  7. J. Nogues, I.K. Schuller, J. Magn. Magn. Mater. 192, 203–232 (1999)

    Article  ADS  Google Scholar 

  8. J.M.D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, New York, 2010)

    Book  Google Scholar 

  9. M. Kiwi, J. Magn. Magn. Mater. 234, 584–595 (2001)

    Article  ADS  Google Scholar 

  10. A.E. Berkowitz, K. Takano, J. Magn. Magn. Mater. 200, 552–570 (1999)

    Article  ADS  Google Scholar 

  11. O. Iglesias, A. Labarta, X. Batlle, J. Nanosci. Nanotechnol. 8, 2761–2780 (2008)

    Google Scholar 

  12. S. Laureti, S.Y. Suck, H. Haas, E. Prestat, O. Bourgeois, D. Givord, Phys. Rev. Lett. 108, 077205 (2012)

    Article  ADS  Google Scholar 

  13. D.W. Kavich, J.H. Dickerson, S.V. Mahajan, S.A. Hasan, J.H. Park, Phys. Rev. B 78, 174414 (2008)

    Article  ADS  Google Scholar 

  14. R. Mohan, M.P. Ghosh, S. Mukherjee, Mater. Res. Express 5, 035029 (2018)

    Article  ADS  Google Scholar 

  15. R. Mohan, M.P. Ghosh, S. Mukherjee, J. Magn. Magn. Mater. 458, 193–199 (2018)

    Article  ADS  Google Scholar 

  16. R. Mohan, M.P. Ghosh, S. Mukherjee, Mater. Res. Express 6, 056105 (2019)

    Article  ADS  Google Scholar 

  17. M.P. Ghosh, S. Mukherjee, J. Magn. Magn. Mater. 489, 165320 (2019)

    Article  Google Scholar 

  18. R. Mohan, M.P. Ghosh, R.K. Choubey, S. Mukherjee, J. Mater. Sci.: Mater. Electron. 30, 11748 (2019)

    Google Scholar 

  19. S. Kumar, V. Singh, S. Aggarwal, U.K. Mandal, R.R. Kotnala, Mater. Sci. Eng., B 116, 76–82 (2010)

    Article  Google Scholar 

  20. M. Zhang, Z.Q. Liu, P. Zhang, X. Tang, J. Yang, X. Zhu, Y. Sun, J. Dai, Adv. Mater. Sci. Eng. 609819, 10 (2013)

    Google Scholar 

  21. H. Yoon, J.S. Lee, J.H. Min, J.H. Wu, Y.K. Kim, Nanoscale Res. Lett. 8, 530 (2013)

    Article  ADS  Google Scholar 

  22. J.F. Xu, W. Ji, Z.X. Shen, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, J. Solid State Chem. 147, 516–519 (1999)

    Article  ADS  Google Scholar 

  23. M. Vaseem, A. Umar, Y.B. Hahn, D.H. Kim, S.K. Lee, J.S. Jang, J.S. Lee, Catal. Commun. 10, 11–16 (2008)

    Article  Google Scholar 

  24. R. Sathyamoorthy, K. Mageshwari, Physica E 47, 157–161 (2013)

    Article  ADS  Google Scholar 

  25. F.P. Koffyberg, F.A. Benko, J. Appl. Phys. 53, 1173–1177 (1982)

    Article  ADS  Google Scholar 

  26. S. Hussain, A. Mumtaz, S.K. Hasanain, M. Usman, J. Appl. Phys. 111, 023908 (2012)

    Article  ADS  Google Scholar 

  27. S. Asbrink, A. Waskowska, J. Phys. 3, 8173 (1991)

    Google Scholar 

  28. C. Yao, Q. Zeng, G.F. Goya, T. Torres, J. Liu, H. Wu, M. Ge, Y. Zeng, Y. Wang, J.Z. Jiang, J. Phys. Chem. C 111, 12274–12278 (2007)

    Article  Google Scholar 

  29. D. Carta, M.F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, A. Corrias, J. Phys. Chem. C 113, 8606–8615 (2009)

    Article  Google Scholar 

  30. M. Hashim, S.E. Shirsath, S.S. Meena, R.K. Kotnala, S. Kumar, D. Ravinder, M. Raghasudha, P. Bhatt, E. Senturk, R.Kumar Alimuddin, J. Magn. Magn. Mater. 381, 416–421 (2015)

    Article  ADS  Google Scholar 

  31. G. Sarveena, A. Kumar, R.K. Kotnala, K.M. Batoo, M. Singh, Ceram. Int. 42, 4993–5000 (2016)

    Article  Google Scholar 

  32. V.B. Gutierrez, M.J.T. Fernandez, R.S. Puche, J. Phys. Chem. C 114, 1789–1795 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samrat Mukherjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, R., Ghosh, M.P. & Mukherjee, S. ZnFe2O4/CuO core–shell structured nanoparticles: synthesis, structural and magnetic properties. Appl. Phys. A 125, 778 (2019). https://doi.org/10.1007/s00339-019-3071-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3071-1

Navigation