Skip to main content
Log in

Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, five samples of tellurite-based glasses with chemical composition TeO2–ZnO–NiO coded as (TZN1–TZN5) have been reported to investigate their optical and gamma-ray shielding properties. Index of refraction (no), molar refraction (RM), molar polarizability (αM), metallization property (M), and static dielectric constant (ε) for all the proposed glasses have been determined. Mass attenuation coefficients (μ/ρ) for the proposed glasses were calculated by Geant4 simulation code and WinXCOM software in the photon energy region 0.001–10 MeV. The obtained values from these methods were compared, and the correlation factor for each glass sample (R2) value was found to be 0.999. Based on the obtained values of μ/ρ and densities of the samples, different γ-ray shielding parameters such as half-value layer (HVL), effective atomic number (Zeff), and mean free path were evaluated. The HVL values for the selected glasses decreased in the order TZN1 < TZN2 < TZN3 < TZN4 < TZN5 and shielding effectiveness for the studied glasses were compared in the term of MFP with some traditional concretes, commercial glasses, and heavy metal oxide glasses. Results reveal that the studied glasses are promising candidates for radiation-shielding applications and can be applied in several of optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I.Z. Hager, R. El-Mallawany, Preparation and structural studies in the (70–x) TeO2–20WO3–10Li2O–xLn2O3 glasses. J. Mater. Sci. 45, 897–905 (2010)

    ADS  Google Scholar 

  2. T. Cheng, K. Asano, Z. Duan, T.H. Tuan, W. Gao, D. Deng, T. Suzuki, Y. Ohishi, Design and optimization of tellurite hybrid microstructured optical fiber with high nonlinearity and low flattened chromatic dispersion for optical parametric amplification. Opt. Commun. 318, 105–111 (2014)

    ADS  Google Scholar 

  3. N.S. Hussain, G. Hungerford, R. El-Mallawany, M.J.M. Gomes, M.A. Lopes, N. Ali, J.D. Santos, S. Buddhudu, Absorption and emission analysis of RE3+(Sm3+and Dy3+): lithium boro tellurite glasses. J. Nanosci. Nanotechnol. 9, 3672–3677 (2009)

    Google Scholar 

  4. I.Z. Hager, R. El-Mallawany, M. Poulain, Infrared and Raman spectra of new molybdenum and tungsten oxy fluoride glasses. J. Mater. Sci. 34, 5163–5168 (1999)

    ADS  Google Scholar 

  5. H.M.M. Moawad, H. Jain, R. El-Mallawany, DC conductivity of silver vanadium tellurite glasses. J. Phys. Chem. Solids 70, 224–233 (2009)

    ADS  Google Scholar 

  6. N. Narasimha Rao, I.V. Kityk, V. Ravi Kumar, C. Srinivasa Rao, M. Piasecki, P. Bragiel, N. Veeraiah, Dc field induced optical effects in ZnF2–PbO–TeO2: TiO2 glass ceramics. Ceram. Int. 38, 2551–2562 (2012)

    Google Scholar 

  7. R. El-Mallawany, I.A. Ahmed, Thermal properties of multicomponent tellurite glass. J. Mater. Sci. 43, 5131–5138 (2008)

    ADS  Google Scholar 

  8. M. Venkateswarlu, M.V.V.K.S. Prasad, K. Swapna, S.K. Mahamuda, A.S. Rao, A. Mohan Babu, D. Haranath, Pr3+ doped lead tungsten tellurite glasses for visible red lasers. Ceram. Int. 40, 6261–6269 (2014)

    Google Scholar 

  9. D. Sushama, P. Predeep, Thermal and optical studies of rare earth doped tungsten–tellurite glasses. Int. J. Appl. Phys. Math. 4, 139–143 (2014)

    Google Scholar 

  10. D.K. Mohanty, V.K. Rai, Y. Dwivedi, S.B. Rai, Enhancement of upconversion intensity in Er3+ doped tellurite glass in presence of Yb3+. Appl. Phys. B Lasers Opt. 104, 233–236 (2011)

    ADS  Google Scholar 

  11. R. El-Mallawany, The optical properties of tellurite glasses. J. Appl. Phys. 72, 1774–1777 (1992)

    ADS  Google Scholar 

  12. X. Feng, J. Shi, M. Segura, N. White, P. Kannan, L. Calvez, X. Zhang, L. Brilland, W. Loh, Towards water-free tellurite glass fiber for 2–5 m nonlinear applications. Fibers 1, 70–81 (2013)

    Google Scholar 

  13. W. Stambouli, H. Elhouichet, B. Gelloz, M. Férid, Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics. J. Lumin. 138, 201–208 (2013)

    Google Scholar 

  14. R. El-Mallawany, Introduction to tellurite glasses, in Technological Advances in Tellurite Glasses: Properties, Processing, and Applications, ed. by V.A.G. Rivera, D. Manzani (Springer, Cham, 2017), pp. 1–13

    Google Scholar 

  15. V. Kozhukharov, M. Marinov, G. Grigorova, Glass-formation range in binary tellurite systems containing transition metal oxides. J. Non Cryst. Solids 28, 429–430 (1978)

    ADS  Google Scholar 

  16. H. Bürger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, S. Neov, Glass formation, properties and structure of glasses in the TeO2–ZnO system. J. Non Cryst. Solids 151, 134–142 (1992)

    ADS  Google Scholar 

  17. S. Todoroki, S. Inoue, T. Matsumoto, Combinatorial evaluation system for thermal properties of glass materials using a vertical furnace with temperature gradient. Appl. Surf. Sci. 189, 241–244 (2002)

    ADS  Google Scholar 

  18. K. Ueda, H. Tabata, T. Kawai, Magnetic and electric properties of transition-metal doped ZnO films. Appl. Phys. Lett. 79, 988–990 (2001)

    ADS  Google Scholar 

  19. W. Siriprom, K. Teanchai, O. Chaemlek, S. Sukphirom, Y. Ruangtaweep, N. Srisittipokakun, J. Kaewkhao, Effects of Ni2+ ions on soda lime silicate glasses. AMR 770, 307–310 (2013)

    Google Scholar 

  20. Y. Gandhi, N. Krishna Mohan, N. Veeraiah, Role of nickel ion coordination on spectroscopic and dielectric properties of ZnF2–As2O3–TeO2: NiO glass system. J. Non Cryst. Solids 357, 1193–1202 (2011)

    ADS  Google Scholar 

  21. X. Du, L. Zhang, G. Dong, K. Sharafudeen, J. Wen, D. Chen, Q. Qian, J. Qiu, Coloration and nonlinear optical properties of ZTe quantum dots in ZnO–TeO2–P2O5 glasses. J. Am. Ceram. Soc. 97, 185–188 (2014)

    Google Scholar 

  22. L.D. Bogomolova, V.A. Zhachkin, T.K. Pavlushkina, Development of green light filters based on high-resistance oxide glasses colored by transition elements. Glass Ceram. 69, 50–54 (2012)

    Google Scholar 

  23. D. Souri, S.A. Salehizadeh, Effect of NiO content on the optical band gap, refractive index, and density of TeO2–V2O5–NiO glasses. J. Mater. Sci. 44, 5800–5805 (2009)

    ADS  Google Scholar 

  24. A.A. Ahmed, A.F. Abbas, Optical absorption characteristics of Ni2+ in mixed-alkali borate glasses. J. Am. Ceram. Soc. 66, 434–439 (1983)

    Google Scholar 

  25. E.A. Waly, M.A. Fusco, M.A. Bourham, Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy 96, 26–30 (2016)

    Google Scholar 

  26. S.R. Manohara, S.M. Hanagodimath, L. Gerward, K.C. Mittal, Exposure buildup factor for heavy metal oxide glasses: a radiation shield. J. Korea Phys. Soc. 59, 2039–2042 (2011)

    ADS  Google Scholar 

  27. R. El-Mallawany, M.I. Sayyed, M.G. Dong, Y.S. Rammah, Simulation of radiation shielding properties of glasses contain PbO. Radiat. Phys. Chem. 151, 239–252 (2018)

    ADS  Google Scholar 

  28. A. Aşkın, M.I. Sayyed, A. Sharma, M. Dal, R. El-Mallawany, M.R. Kaçal, Investigation of the gamma ray shielding parameters of (100–x)[0.5Li2O–0.1B2O3–0.4P2O5]-xTeO2 glasses using Geant4 and FLUKA codes. J. Non Cryst. Solids 521, 119489 (2019)

    ADS  Google Scholar 

  29. M.I. Sayyed, G. Lakshminarayana, Structural, thermal, optical features and shielding parameters investigations of optical glasses for gamma radiation shielding and defense applications. J. Non Cryst. Solids 487, 53–59 (2018)

    ADS  Google Scholar 

  30. R. El-Mallawany, M.I. Sayyed, M.G. Dong, Comparative shielding properties of some tellurite glasses: part 2. J. Non Cryst. Solids 474, 16–23 (2017)

    ADS  Google Scholar 

  31. M.I. Sayyed, Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions. J. Alloys Comp. 695, 3191–3197 (2017)

    Google Scholar 

  32. M.I. Sayyed, Investigation of shielding parameters for smart polymers. Chin. J. Phys. 54, 408–415 (2016)

    Google Scholar 

  33. Y.S. Rammah, M.I. Sayyed, A.A. Ali, H.O. Tekin, R. El-Mallawany, Optical properties and gamma-shielding features of bismuth borate glasses. Appl. Phys. A 124, 832 (2018)

    ADS  Google Scholar 

  34. Y.S. Rammah, M.I. Sayyed, A.S. Abohaswa, H.O. Tekin, FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2. Appl. Phys. A 124, 650 (2018)

    ADS  Google Scholar 

  35. M.I. Sayyed, Y.S. Rammah, A.S. Abouhaswa, H.O. Tekin, B.O. Elbashir, ZnO–B2O3–PbO glasses: synthesis and radiation shielding characterization. Phys B 548, 20–26 (2018)

    ADS  Google Scholar 

  36. Y.S. Rammah, A.S. Abouhaswa, M.I. Sayyed, H.O. Tekin, R. El-Mallawany, Structural, UV and shielding properties of ZBPC glasses. J. Non Cryst. Solids 509, 99–105 (2019)

    ADS  Google Scholar 

  37. A.S. Abouhaswa, Y.S. Rammah, M.I. Sayyed, H.O. Tekin, Synthesis, structure, optical and gamma radiation shielding properties of B2O3–PbO2–Bi2O3 glasses. Compos. B 172, 218–225 (2019)

    Google Scholar 

  38. O.A. Zamyatin, M.F. Churbanov, J.A. Medvedeva, S.A. Gavrin, E.V. Zamyatina, A.D. Plekhovich, Glass-forming region and optical properties of the TeO2–ZnO–NiO system. J. Non Cryst. Solids 479, 29–41 (2018)

    ADS  Google Scholar 

  39. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. A 506, 250–303 (2003)

    ADS  Google Scholar 

  40. L. Gerward, N. Guilbert, K.B. Jensen, H. Lerving, WinXCom—a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 74, 653–654 (2004)

    ADS  Google Scholar 

  41. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. J. Appl. Phys. 79, 1736–1740 (1996)

    ADS  Google Scholar 

  42. R. El-Mallawany, M.D. Abdalla, I.A. Ahmed, New tellurite glasses, optical properties. Mater. Chem. Phys 109, 291–296 (2008)

    Google Scholar 

  43. E.A. Moelwyn-Hughes, Physical Chemistry (Pergamon, London, 1961)

    Google Scholar 

  44. R. El-Mallawany, Optical properties of tellurite glasses. J. Appl. Phys. 27, 1774–1777 (1992)

    ADS  Google Scholar 

  45. S.H. Elazoumi, H.A.A. Sidek, Y.S. Rammah, R. El-Mallawany, M.K. Halimah, K.A. Matori, M.H.M. Zaid, Effect of PbO on optical properties of tellurite glass. Res. Phys. 8, 16–25 (2018)

    Google Scholar 

  46. Y.S. Rammah, A.S. Abouhaswa, A.H. Salama, R. El-Mallawany, Optical, magnetic characterization, and gamma-ray interactions for borate glasses using XCOM program. J. Theor. Appl. Phys. 13, 155–164 (2019)

    ADS  Google Scholar 

  47. X. Zhao, X. Wang, H. Lin, Z. Wang, Electronic polarizability and optical basicity of lanthanide oxides. Phys. B 392, 132–136 (2007)

    ADS  Google Scholar 

  48. S.S. Rao, G. Ramadevudu, M. Shareefuddin, A. Hameed, M.N. Chary, M.L. Rao, Optical properties of alkaline earth borate glasses. Int. J. Eng. Sci. Technol. 4, 25–35 (2012)

    Google Scholar 

  49. M.M. Wakkad, EKh Shokr, S.H. Mohamed, Optical and calorimetric studies of Ge–Sb–Se glasses. J. Cryst. Solids 265, 157–166 (2000)

    ADS  Google Scholar 

  50. F. Akman, M.R. Kacal, M.I. Sayyed, H.A. Karataş, Study of gamma radiation attenuation properties of some selected ternary alloys. J. Alloys Compd. 782, 315–322 (2019)

    Google Scholar 

  51. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997)

    Google Scholar 

  52. P. Fuochi, U. Corda, M. Lavalle, A. Kovacs, M. Baranyai, A. Mejri, K. Farah, Dosimetric properties of gamma and electron-irradiated commercial window glasses. Nukleonika 54, 39–43 (2009)

    Google Scholar 

  53. M.I. Sayyed, F. Akman, I.H. Gecibesler, H.O. Tekin, Measurement of mass attenuation coefficients, effective atomic numbers, and electron densities for different parts of medicinal aromatic plants in low-energy region. Nucl. Sci. Technol. 29, 144 (2018)

    Google Scholar 

  54. O. Agar, M.I. Sayyed, F. Akman, H.O. Tekin, M.R. Kacal, An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys. Nucl. Eng. Technol. 51, 853–859 (2019)

    Google Scholar 

  55. M.I. Sayyed, Investigation of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions. Can. J. Phys. 94, 1133–1137 (2016)

    ADS  Google Scholar 

  56. V.P. Singh, N.M. Badiger, J. Kaewkhao, Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study. J. Non Cryst. Solids 404, 167–173 (2014)

    ADS  Google Scholar 

  57. P. Kaur, K.J. Singh, S. Thakur, P. Singh, B.S. Bajwa, Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 206, 367–377 (2019)

    ADS  Google Scholar 

  58. http://www.schott.com/advanced_optics/english/products/optical-materials/specialmaterials/radiation-shielding-glasses/index.html

Download references

Acknowledgement

One of the authors (Al-Buriahi) would like to express his deep thanks appreciation to Prof. Dr. B. T. Tonguc, vice rector of Sakarya University, Turkey for his great support providing and all facilities necessary during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Rammah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Buriahi, M.S., Rammah, Y.S. Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses. Appl. Phys. A 125, 678 (2019). https://doi.org/10.1007/s00339-019-2976-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2976-z

Navigation