Skip to main content
Log in

Gamma ray shielding behavior of Li2O-doped PbO–MoO3–B2O3 glass system

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, five glasses for radiation shielding applications in the composition of (30 + x) PbO–5 MoO3–(25 − x) Li2O–40 B2O3 (where x = 0, 5, 10, 15 and 20 mol%) have been prepared. The density increases from 4.354 to 6.578 g cm−3 and the molar volume decreases from 25.144 to 22.520 cm3 with the replacement of Li2O by PbO. The indirect and direct band gap energies decrease from (2.2870–2.2297) eV and (2.9619–2.8660) eV, respectively, as lead content increases from 30 to 50 mol%. In addition, the refractive index of the samples lies between 2.6214 and 2.6429. Geant4 simulation code has been used to evaluate the gamma photon transmission through the prepared samples. Pb50Li5 sample has lower transmission fraction among the studied glasses. For the 2-cm glass thickness, the transmission fraction of Pb30Li25 sample was found to be 0.433 while at the same thickness the transmission fraction of Pb50Li5 sample is 0.265. At 1173 keV, the HVL values were found to be 1.752 cm for Pb50Li5 and 2.693 cm for Pb30Li25 glasses. At the same photon energy, the MFP values were calculated to be 2.529 cm and 3.886 cm for the Pb50Li5 and Pb30Li25 samples, respectively. Due to the higher Pb content existing in the Pb50Li5 glass, this glass effectively blocks the gamma rays compared to the other samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.E. Ersundu, M. Büyükyıldız, M.Ç. Ersundu, E. Şakar, M. Kurudirek, The heavy metal oxide glasses within the WO3–MoO3–TeO2 system to investigate the shielding properties of radiation applications. Prog. Nucl. Energy 104, 280–287 (2018)

    Article  Google Scholar 

  2. S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 144, 356–360 (2018)

    Article  ADS  Google Scholar 

  3. D.K. Gaikwad, P.P. Pawar, T.P. Selvam, Mass attenuation coefficients and effective atomic numbers of biological compounds for gamma ray interactions. Radiat. Phys. Chem. 138, 75–80 (2017)

    Article  ADS  Google Scholar 

  4. N.I. Cherkashina, V.I. Pavlenko, A.V. Noskov, Radiation shielding properties of polyimide composite materials. Radiat. Phys. Chem. 159, 111–117 (2019)

    Article  Google Scholar 

  5. S. Yalcin, B. Aktas, D. Yilmaz, Radiation shielding properties of Cerium oxide and Erbium oxide doped obsidian glass. Radiat. Phys. Chem. 160, 83–88 (2019)

    Article  Google Scholar 

  6. T. Shams, M. Eftekhar, A. Shirani, Investigation of gamma radiation attenuation in heavy concrete shields containing hematite and barite aggregates in multi-layered and mixed forms. Constr. Build. Mater. 182, 35–42 (2018)

    Article  Google Scholar 

  7. N.M. Azreen, R.S.M. Rashid, M. Haniza, Y.L. Voo, Y.H.M. Amran, Radiation shielding of ultra—high-performance concrete with silica sand amang and lead glass. Constr. Build. Mater. 172, 370–377 (2018)

    Article  Google Scholar 

  8. W. Guo-hui, H. Man-li, C. Fan-chao, F. Jun-dong, D. Yao-dong, Enhancement of flame retardancy and radiation shielding properties of ethylene vinyl acetate based radiation shielding composites by EB irradiation. Prog. Nucl. Energy 112, 225–232 (2019)

    Article  Google Scholar 

  9. O. Agar, M.I. Sayyed, F. Akman, H.O. Tekin, M.R. Kaçal, An extensive investigation on gamma ray shielding features of Pd/Ag based alloys. Nucl. Eng. Technol. 51, 853–859 (2019)

    Article  Google Scholar 

  10. E. Şakar, M. Büyükyıldız, B. Alım, B.C. Şakar, M. Kurudire, Leaded brass alloys for gamma-ray shielding applications. Radiat. Phys. Chem. 159, 64–69 (2019)

    Article  Google Scholar 

  11. G. Lakshminarayana, A. Kumar, M.G. Dong, M.I. Sayyed, N.V. Long, M.A. Mahdi, Exploration of gamma radiation shielding features for titanate bismuth borotellurite glasses using relevant software program and Monte Carlo simulation code. J. Noncryst. Solids 481, 65–73 (2018)

    Article  ADS  Google Scholar 

  12. A. Kumar, Gamma ray shielding properties of PbO–Li2O–B2O3 glasses. Radiat. Phys. Chem. 136, 50–53 (2017)

    Article  ADS  Google Scholar 

  13. M. Dong, X. Xue, A. Kumar, H. Yang, M.I. Sayyed, S. Liu, E. Bu, A novel method of utilization of hot dip galvanizing slag using the heat waste from itself for protection from radiation. J. Hazard. Mater. 344, 602–614 (2018)

    Article  Google Scholar 

  14. A. Kumar, M.I. Sayyed, M. Dong, X. Xue, Effect of PbO on the shielding behavior of ZnO–P2O5 glass system using Monte Carlo simulation. J. Noncryst. Solids 481, 604–607 (2018)

    Article  ADS  Google Scholar 

  15. M.A. Hassan, F.M. Ebrahim, M.G. Moustafa, Z.M.A. El-Fattah, M.M. El-Okr, Unraveling the hidden Urbach edge and Cr6+ optical transitions in borate glasses. J. Noncryst. Solids 515, 157–164 (2019)

    Article  ADS  Google Scholar 

  16. E. Salama, A. Maher, G.M. Youssef, Gamma radiation and neutron shielding properties of transparent alkali borosilicate glass containing lead. J. Phys. Chem. Solids 131, 139–147 (2019)

    Article  ADS  Google Scholar 

  17. Y. Al‐Hadeethi, S.A. Tijani, Radiation interaction parameters of commercial building glasses at energies of interest for potential nuclear accidents. J. Am. Ceram. Soc. 0, 4765–4772 (2019)

    Article  Google Scholar 

  18. N.S. Prabhu, V. Hegde, A. Wagh, M.I. Sayyed, O. Agar, S.D. Kamath, Physical, structural and optical properties of Sm3+ doped lithium zinc alumino borate glasses. J. Noncryst. Solids 515, 116–124 (2019)

    Article  ADS  Google Scholar 

  19. M.G. Dong, M.I. Sayyed, G. Lakshminarayana, M.Ç. Ersundu, A.E. Ersundu, P. Nayar, M.A. Mahdi, Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code. J. Noncryst. Solids 468, 12–16 (2017)

    Article  ADS  Google Scholar 

  20. M.I. Sayyed, A.A. Ali, H.O. Tekin, Y.S. Rammah, Investigation of gamma-ray shielding properties of bismuth borotellurite glasses using MCNPX code and XCOM program. Appl. Phys. A 125, 445 (2019)

    Article  ADS  Google Scholar 

  21. A. Kumar, R. Kaur, M.I. Sayyed, M. Rashad, M. Singh, A.M. Ali, Physical, structural, optical and gamma ray shielding behaviour of (20 + x) PbO–10 BaO–10 Na2O–10 MgO–(50 − x) B2O3 glasses. Phys. B Phys. Condens. Matter 552, 110–118 (2019)

    Article  ADS  Google Scholar 

  22. M.H.A. Mhareb, S. Hashim, S.K. Ghoshal, Y.S.M. Alajerami, M.J. Bqoor, A.I. Hamdan, M.A. Saleh, M.K.B.A. Karim, Effect of Dy2O3 impurities on the physical, optical and thermoluminescence properties of lithium borate glass. J. Lumin. 177, 366–372 (2016)

    Article  Google Scholar 

  23. A. Ichoja, S. Hashim, S.K. Ghoshal, I.H. Hashim, R.S. Omar, Physical, structural and optical studies on magnesium borate glasses doped with dysprosium ion. J. Rare Earths 36, 1264–1271 (2018)

    Article  Google Scholar 

  24. M.H.A. Mhareb, M.A. Almessiere, M.I. Sayyed, Y.S.M. Alajerami, Physical, structural, optical and photons attenuation attributes of lithium-magnesium-borate glasses: role of Tm2O3 doping. Optik 182, 821–831 (2019)

    Article  ADS  Google Scholar 

  25. F. Zaman, G. Rooh, N. Srisittipokakun, C. Wongdeeying, H.J. Kim, J. Kaewkhao, Physical, structural and luminescence investigation of Eu3+-doped lithium-gadolinium bismuth-borate glasses for LEDs. Solid State Sci. 80, 161–169 (2018)

    Article  ADS  Google Scholar 

  26. A.M. Abdelghany, Combined DFT, deconvolution analysis for structural investigation of copper-doped lead borate glasses. Open Spectrosc. J. 6, 9–14 (2012)

    Article  ADS  Google Scholar 

  27. L. Balachander, G. Ramadevudu, M. Shareefuddin, R. Sayanna, Y.C. Venudhar, IR analysis of borate glasses containing three alkali oxides. Sci. Asia 39, 278–283 (2013)

    Article  Google Scholar 

  28. H.A. ElBatal, A.M. Abdelghany, I.S. Ali, Optical and FTIR studies of CuO-doped lead borate glasses and effect of gamma irradiation. J. Noncryst. Solids 358, 820–825 (2012)

    Article  ADS  Google Scholar 

  29. M. Machida, H. Eckert, FT-IR, FT-Raman and 95 Mo MAS–NMR studies on the structure of ionically conducting glasses in the system AgI–Ag2O–MoO3. Solid State Ion. 107, 255–268 (1998)

    Article  Google Scholar 

  30. FH El Batal, Gamma ray interaction with lithium borate glasses containing WO3. Indian J. Pure Appl. Phys. 47, 471–480 (2009)

    Google Scholar 

  31. M.I. Sayyed, A. Aşkın, A.M. Ali, A. Kumar, M. Rashad, A.M. Alshehri, M. Singh, Extensive study of newly developed highly dense transparent PbO–WO3–BaO–Na2O–B2O3 glasses for radiation shielding applications. J Noncryst. Solids 521, 119521 (2019)

    Article  ADS  Google Scholar 

  32. A.M. Ali, M.I. Sayyed, A. Kumar, M. Rashad, A.M. Alshehri, R. Kaur, Optically transparent newly developed glass materials for gamma ray shielding applications. J Noncryst. Solids 521, 119490 (2019)

    Article  ADS  Google Scholar 

  33. F. Laariedh, M.I. Sayyed, A. Kumar, H.O. Tekin, R. Kaur, T.B. Badeche, Studies on the structural, optical and radiation shielding properties of (50−x) PbO–10 WO3–10 Na2O–10 MgO–(20 + x) B2O3 glasses. J. Noncryst. Solids 513, 159–166 (2019)

    Article  ADS  Google Scholar 

  34. S. Thakur, V. Thakur, A. Kaur, L. Singh, Structural, optical and thermal properties of nickel doped bismuth borate glasses. J Noncryst. Solids 512, 60–71 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant number R.G.P. 2/33/40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Sayyed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A.M., Sayyed, M.I., Rashad, M. et al. Gamma ray shielding behavior of Li2O-doped PbO–MoO3–B2O3 glass system. Appl. Phys. A 125, 671 (2019). https://doi.org/10.1007/s00339-019-2964-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2964-3

Navigation