Skip to main content
Log in

Exploring the role of Zn doping on the structure, morphology, and optical properties of LaFeO3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structural and optical properties of nanocrystalline LaFe1−xZnxO3 (0 ≤ x ≤ 0.3) samples, synthesized through sol–gel auto-combustion technique, have been studied. Transmission electron microscopy concomitant with Williamson–Hall analysis elucidates the nanocrystalline nature of the samples. High-resolution transmission electron microscopy in combination with selected area electron diffraction patterns reveals the interplanar spacing and poly-crystalline nature of samples, respectively. LFO being charge transfer insulator, its direct optical bandgap corresponding to O2p band, and the unoccupied Fe-3d band is determined. The red shift in bandgap is found with the increase in Zn doping and may be attributed to the formation of localized energy levels near the conduction band and also to the change in crystal field with the creation of oxygen vacancies. Higher order transition energy corresponding to multiple transitions has also been determined and is found to decrease with Zn doping. Urbach tail which measures the disorder in the system has been found in the pristine and doped samples and is found to increase with zinc doping. Optical constants including complex refractive index and optical conductivity have been determined from the reflectance data. The pristine sample has a refractive index of maximum value 3 which decreases with Zn doping making the sample more transparent and hence conductive. Zn doping enhances the conductivity of the pristine sample by creating the charge imbalance and thereby promoting the hopping motion of charge carriers, making the sample more transparent in the optical region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Acharya, J. Mondal, S. Ghosh, S.K. Roy, P.K. Chakrabarti, Mater. Lett. 64, 415 (2010)

    Article  Google Scholar 

  2. M.D. Scafetta, A.M. Cordi, J.M. Rondinelli, S.J. May, J. Phys. Condens. Matter J. Phys. Condens. Matter 26, 505502 (2014)

    Article  Google Scholar 

  3. S. Phokha, S. Pinitsoontorn, S. Maensiri, S. Rujirawat, J. Sol-Gel. Sci. Technol. 71, 333 (2014)

    Article  Google Scholar 

  4. F.J. Berry, X. Ren, J.R. Gancedo, J.F. Marco, Hyperfine Interact. 156/157, 335 (2004)

    Article  ADS  Google Scholar 

  5. F. Söderlind, M.A. Fortin, R.M. Petoral Jr., A. Klasson, T. Veres, M. Engström, K. Uvdal, P.-O. Käll, Nanotechnology 19, 085608 (2008)

    Article  ADS  Google Scholar 

  6. Q. Ming, M.D. Nersesyan, A. Wagner, J. Ritchie, J.T. Richardson, D. Luss, A.J. Jacobson, Y.L. Yang, Solid State Ion. 122, 113 (1999)

    Article  Google Scholar 

  7. S. Manzoor, S. Husain, V.R. Reddy, Appl. Phys. Lett. 3, 1 (2018)

    Google Scholar 

  8. S. Manzoor, S. Husain, Mater. Res. Express 5, 55009 (2018)

    Article  ADS  Google Scholar 

  9. T. Arima, Y. Tokura, J. Phys. Soc. Jpn. 64, 2488 (1995)

    Article  ADS  Google Scholar 

  10. J.E. Kleibeuker, Z. Zhong, H. Nishikawa, J. Gabel, A. Müller, F. Pfaff, M. Sing, K. Held, R. Claessen, G. Koster, G. Rijnders, Phys. Rev. Lett. 113, 1 (2014)

    Article  Google Scholar 

  11. S. Manzoor, S. Husain, J. Appl. Phys. 3, 065110 (2018)

    Article  ADS  Google Scholar 

  12. M. Marezio, J.P. Remeika, P.D. Dernier, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 26, 2008 (1970)

    Article  Google Scholar 

  13. T.M. Rearick, G.L. Catchen, J.M. Adams, Phys. Rev. B 48, 224 (1993)

    Article  ADS  Google Scholar 

  14. G. Hearne, M. Pasternak, R. Taylor, P. Lacorre, Phys. Rev. B 51, 11495 (1995)

    Article  ADS  Google Scholar 

  15. W.C.C. Koehler, E.O.O. Wollan, J. Phys. Chem. Solids 2, 100 (1957)

    Article  ADS  Google Scholar 

  16. R.L. White, J. Appl. Phys. 40, 1061 (1969)

    Article  ADS  Google Scholar 

  17. P. Kumar, M. Kar, Mater. Sci. Semicond. Process. 31, 262 (2015)

    Article  Google Scholar 

  18. C. Suryanarayana, M.G. Norton, X-ray Diffraction (Springer, Boston, 1998)

    Book  Google Scholar 

  19. A. Somvanshi, S. Husain, W. Khan, J. Alloys Compd. 778, 439 (2019)

    Article  Google Scholar 

  20. R.F. Egerton, Physical Principles of Electron Microscopy (Springer, New York, 2005)

    Book  Google Scholar 

  21. D. Suresh, An Investigation on the Band Gap and Band Edge of Semi-Conducting Lanthanum Transition Metal Perovskites for Photocatalytic Applications (University of South Florida, Tampa, 2015)

    Google Scholar 

  22. T. Arima, Y. Tokura, J.B. Torrance, Phys. Rev. B 48, 17006 (1993)

    Article  ADS  Google Scholar 

  23. J. Llanos, C. Mujica, A. Buljan, J. Alloys Compd. 316, 146 (2001)

    Article  Google Scholar 

  24. M.D. Scafetta, A.M. Cordi, J.M. Rondinelli, S.J. May, J. Phys. Condens. Matter 26, 505502 (2014)

    Article  Google Scholar 

  25. S.A. Mir, M. Ikram, K. Asokan, J. Phys. Conf. Ser. 534, 012017 (2014)

    Article  Google Scholar 

  26. Y. Janbutrach, S. Hunpratub, E. Swatsitang, Nanoscale Res. Lett. 9, 498 (2014)

    Article  ADS  Google Scholar 

  27. J. Melsheimer, D. Ziegler, Thin Solid Films 129, 35 (1985)

    Article  ADS  Google Scholar 

  28. K.A. Aly, A.M. Abd Elnaeim, M.A.M. Uosif, O. Abdel-Rahim, Phys. B Condens. Matter 406, 4227 (2011)

    Article  ADS  Google Scholar 

  29. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  ADS  Google Scholar 

  30. S.A. Fayek, M. El-Ocker, A.S. Hassanien, Mater. Chem. Phys. 70, 231 (2001)

    Article  Google Scholar 

  31. C.M. Muiva, T.S. Sathiaraj, J.M. Mwabora, J. Appl. Phys. Eur. Phys. J. Appl. Phys 59, 10301 (2012)

    Article  ADS  Google Scholar 

  32. A. Sharma, N. Mehta, A. Kumar, J. Mater. Sci. 46, 4509 (2011)

    Article  ADS  Google Scholar 

  33. M. Karimi, M. Rabiee, F. Moztarzadeh, M. Tahriri, M. Bodaghi, Curr. Appl. Phys. 9, 1263 (2009)

    Article  ADS  Google Scholar 

  34. C. Si, Z. Liu, W. Duan, F. Liu, Phys. Rev. Lett. 111, 1 (2013)

    Article  Google Scholar 

  35. A. Chimonidou, E.C.G. Sudarshan. https://arXiv.org/abs/0810.4555 (2018)

  36. N.F. Habubi, S.F. Oboudi, S.S. Chiad, J. Nano Electron. Phys. 4, 04008 (2012)

    Google Scholar 

  37. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Husain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoor, S., Husain, S., Somvanshi, A. et al. Exploring the role of Zn doping on the structure, morphology, and optical properties of LaFeO3. Appl. Phys. A 125, 509 (2019). https://doi.org/10.1007/s00339-019-2806-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2806-3

Navigation