Skip to main content
Log in

A solution-processed binary composite as a cathode material in lithium–sulfur batteries

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Poly (acrylonitrile) (PAN), acetylene black (AB) and graphene oxide (GO), as conductive constituents, were mixed with sulfur by solution-processing technique using dimethyl sulfoxide as a solvent. The physical properties of the as prepared composites were characterized by X-ray diffraction, Raman and scanning electron microscope analysis. The electrochemical property of S/GO composite material exhibits better cyclical stability. The first-cycle capacity obtained by S/GO composite was 937 mAh g−1 at 0.1 C with coulombic efficiency of 98% and good cycle ability around 813 mAh g−1 discharge capacity at the 50th cycle which is higher than of S/PAN and S/AB composite.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Scrosati, J. Hassoun, Y.-K. Sun, Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4, 3287–3295 (2011)

    Article  Google Scholar 

  2. A.S. Ari, P. Bruce, B. Scrosati, J.M. Tarascon, W.V. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005)

    Article  ADS  Google Scholar 

  3. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012)

    Article  ADS  Google Scholar 

  4. A. Manthiram, Y. Fu, Y. Su, Challenges and prospects of lithium-sulfur batteries. Chem. Res. 46, 1125–1134 (2012)

    Article  Google Scholar 

  5. X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009)

    Article  ADS  Google Scholar 

  6. G. Radhika, R. Subadevi, K. Krishnaveni, W.R. Liu, M. Sivakumar, Synthesis and electrochemical performance of PEG-MnO2-sulfur composites cathode materials for lithium sulfur batteries. J. Nanosci. Nanotechnol. 18(1), 127–131 (2018)

    Article  Google Scholar 

  7. P. Rajkumar, K. Diwakar, G. Radhika, K. Krishnaveni, R. Subadevi, M. Sivakumar, Effect of silicon dioxide in sulfur/carbon black composite as a cathode material for lithium sulfur batteries. Vacuum 161, 37–48 (2019)

    Article  ADS  Google Scholar 

  8. K. Krishnaveni, R. Subadevi, M. Raja, T. PremKumar, M. Sivakumar, Sulfur/PAN/acetylene black composite prepared by a solution processing technique for lithium-sulfur batteries. J. Appl. Polym. Sci. 135, 46598 (2018)

    Article  Google Scholar 

  9. J.Q. Li, C. Han, M.X. Jing, H. Yang, X.Q. Shen, S.B. Qin, Flakelike oxygen-deficient lithium vanadium oxides as a high ionic and electronic conductive cathode materials for high power Li-ion battery. Appl. Phys. A 124, 450 (2018)

    Article  ADS  Google Scholar 

  10. A. Konarov, D. Gosselink, T.N.L. Doan, Y. Zhang, Y. Zhao, P. Chen, Simple, scalable, and economical preparation of sulfur-PAN composite cathodes for Li/S batteries. J. Power Sour. 259, 183–187 (2014)

    Article  ADS  Google Scholar 

  11. L. Yin, J. Wang, F. Lin, J. Yang, Y. Nuli, Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries. Energy Environ. Sci. 5, 6966–6972 (2012)

    Article  Google Scholar 

  12. S.J. Rettig, J. Trotter, Refinement of the structure of orthorhombic sulfur, α-S8. Acta Cryst. C Cryst. Struct. Commun. 43, 2260–2262 (1987)

    Article  Google Scholar 

  13. F. Tuz Johra, J.W. Lee, W.G. Jung, Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 20, 2883–2887 (2014)

    Article  Google Scholar 

  14. J. Wang, J. Yang, C. Wan, K. Du, J. Xie, N. Xu, Sulfur composite cathode materials for rechargeable lithium batteries. Adv. Funct. Mater. 13, 487–492 (2003)

    Article  Google Scholar 

  15. Y.V. Mikhaylik, J.R. Akridge, Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969 (2004)

    Article  Google Scholar 

  16. J. Li, K. Li, M. Li, D. Gosselink, Y. Zhang, P. Chen, Sulfur/polyacrylonitrile/graphene composite cathode for lithium batteries with excellent cyclability. J. Power Sources 252, 107–112 (2014)

    Article  ADS  Google Scholar 

  17. K. Krishnaveni, R. Subadevi, G. Radhika, T. Premkumar, M. Raja, W.-R. Liu, M. Sivakumar, Carbon wrapping effect on sulfur/polyacrylonitrile composite cathode materials for lithium sulfur batteries. J. Nanosci. Nanotechnol. 18, 121–126 (2018)

    Article  Google Scholar 

  18. A.T. Ward, Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures. J. Phys. Chem. 72(12), 4133–4139 (1968)

    Article  Google Scholar 

  19. P. Rajkumar, K. Diwakar, R. Subadevi, R.M. Gnanamuthu, M. Sivakumar, Sulfur cloaked with different carbonaceous materials for high performance lithium sulfur batteries. Curr. Appl. Phys. 19, 902–909 (2019)

    Article  ADS  Google Scholar 

  20. J. Zhou, Y. Guo, C. Liang, J. Yang, J. Wang, Y. Nuli, Confining small sulfur molecules in peanut shell-derived microporous graphitic carbon for advanced lithium sulfur battery. Electrochim. Acta 273, 127–135 (2018)

    Article  Google Scholar 

  21. T.H. Hwang, D.S. Jung, J.S. Kim, B.G. Kim, J.W. Choi, One-dimensional carbon–sulfur composite fibers for Na-S rechargeable batteries operating at room temperature. Nano Lett. 13, 4532–4538 (2013)

    Article  ADS  Google Scholar 

  22. H. Sohn, M.L. Gordin, M. Regula, D.H. Kim, Y.S. Jung, J. Song, D. Wang, Porous spherical polyacrylonitrile–carbon nano composite with high loading of sulfur for lithium-sulfur batteries. J. Power Sour. 302, 70–78 (2016)

    Article  ADS  Google Scholar 

  23. K. Krishnaveni, R. Subadevi, T. Premkumar, M. Raja, M. Sivakumar, Synthesis and characterization of graphene oxide capped sulfur/polyacrylonitrile composite cathode by simple heat treatment. J. Sulfur Chem. (2019). https://doi.org/10.1080/17415993.2019.1582655

    Article  Google Scholar 

  24. X.M. He, W.H. Pu, J.G. Ren, L. Wang, J.L. Wang, C.Y. Jiang, C.R. Wan, Charge/discharge characteristics of sulfur composite cathode materials in rechargeable lithium batteries. Electrochim. Acta 52, 7372–7376 (2007)

    Article  Google Scholar 

  25. Y.J. Choi, K.W. Kim, H.J. Ahn, J.H. Ahn, Improvement of cycle property of sulfur electrode for lithium/sulfur battery. J. Alloys Compd. 449, 313–316 (2008)

    Article  Google Scholar 

  26. S.E. Cheon, K.S. Ko, J.H. Cho, S.W. Kim, E.Y. Chin, H.T. Kim, Rechargeable lithium sulfur battery. I Structural change of sulfur cathode during discharge and charge. J. Electrochem. Soc. 150, A796–A799 (2003)

    Article  Google Scholar 

  27. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  28. T. Szabó, O. Berkesi, I. Dékány, DRIFT study of deuterium-exchanged graphite oxide. Carbon 43, 3186–3189 (2005)

    Article  Google Scholar 

  29. A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998)

    Article  Google Scholar 

  30. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  31. L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E.J. Cairns, Y. Zhang, Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 133, 18522–18525 (2011)

    Article  Google Scholar 

  32. W.G. Wang, X. Wang, L.Y. Tian, Y.L. Wang, S.H. Ye, In situ sulfur deposition route to obtain sulfur–carbon composite cathodes for lithium-sulfur batteries. J. Mater. Chem. A 2(12), 4316–4323 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

All the authors acknowledge the financial support by DST-SERB, New Delhi under the Physical sciences, Grant sanctioned vide EMR/2016/006302. In addition, all the authors acknowledge for the financial support by BSR of University Grants Commission (UGC), New Delhi, India and Ministry of Human Resource Development RUSA-Phase 2.0 Grant sanctioned vide Lt.No.F-24-51/2014 U Policy (TN Multi Gen), Department of Education, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sivakumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnaveni, K., Subadevi, R. & Sivakumar, M. A solution-processed binary composite as a cathode material in lithium–sulfur batteries. Appl. Phys. A 125, 469 (2019). https://doi.org/10.1007/s00339-019-2758-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2758-7

Navigation