Skip to main content
Log in

A comparative study on the influence of the addition of different nano-oxide particles on the thermopower of (Bi,Pb)-2223 superconductor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Solid-state reaction technique was used to prepare superconductor samples with nominal composition of (SnO2)x(Bi,Pb)-2223 and (NiO)x(Bi,Pb)-2223, where 0.0 ≤ x ≤ 0.2 wt%. The prepared samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The impact of SnO2 and NiO nanoparticles addition on the thermopower of (Bi,Pb)-2223 was measured using a standard differential technique. The Seebeck coefficient values in the presence of NiO nanoparticles were about 5–37.9% higher than those obtained with the addition of SnO2 nanoparticles. Higher values of Seebeck coefficients result in a wide variety of applications of these superconductors such as electronics and thermoelectric devices. The obtained results were analyzed according to the two-band model (Fermi-liquid model) and the two-band model with an extra linear term. The Fermi velocity (υF), Fermi energy, Fermi temperature (TF), Fermi wavenumber (KF), Fermi wavelength (λF) as well as the carrier concentration (N/V) values were calculated and discussed as a function of the nanoparticles content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.T. Rahal, R. Awad, A.M. Abdel-Gaber, Phys. B Condens. Matter. 536, 803 (2018)

    Article  ADS  Google Scholar 

  2. H.T. Rahal, A.M. Abdel-Gaber, R. Awad, Chem. Eng. Commun. 204, 348 (2017)

    Article  Google Scholar 

  3. W. Abdeen, S. Marahba, R. Awad, A.A. Aly, I.H. Ibrahim, M. Matar, J. Adv. Ceram. 5, 54 (2016)

    Article  Google Scholar 

  4. H.T. Rahal, R. Awad, A.A. Gaber, M. Roumie, J. Supercond. Nov. Magn. 30, 1971 (2016)

    Article  Google Scholar 

  5. H.T. Rahal, R. Awad, A.M. Abdel-Gaber, J. Phys. Conf. Ser. 869, 012026 (2017)

    Article  Google Scholar 

  6. M.A. Aksan, M.E. Yakinci, J. Alloys Compd. 385, 33 (2004)

    Article  Google Scholar 

  7. H. Gündoğmuş, B. Özçelik, A. Sotelo, M.A. Madre, J. Phys: Conf. Ser. 667, 012001 (2016)

    Google Scholar 

  8. B. Özkurt, B. Özçelik, K. Kıymaç, M.A. Aksan, M.E. Yakıncı, Phys. C. 467, 112 (2016)

    Article  ADS  Google Scholar 

  9. H.T. Rahal, A.M. Abdel-Gaber, R. Awad, Int. J. Electrochem. Sci. 12, 10115 (2017)

    Article  Google Scholar 

  10. H.T. Rahal, R. Awad, A.M. Abdel-Gaber, D. Bakeer, J. Nanomater. (2017). https://doi.org/10.1155/2017/7460323

    Article  Google Scholar 

  11. D.S. Bai, R.P. Suvarna, C.B.M. Krishna, IJACS 4, 98 (2016)

    Google Scholar 

  12. A.N. Naje, A.S. Norry, A.M. Suhail, Int. J. Innov. Res. Sci. Eng. Technol. 2, 7068 (2013)

    Google Scholar 

  13. S. Blessi, M.M.L. Sonia, S. Vijayalakshmi, S. Pauline, Chem. Tech. Res. 6, 2153 (2014)

    Google Scholar 

  14. P. Chetri, B. Choudhury, A. Choudhury, J. Mater. Chem. C 2, 9294 (2014)

    Article  Google Scholar 

  15. M. El-Kemary, N. Nagy, I. El-Mehasseb, Mat. Sci. Semicond. Proc. 16, 1747 (2013)

    Article  Google Scholar 

  16. H. Wu, G. Wu, L. Wang, Powder Technol 269, 443 (2015)

    Article  Google Scholar 

  17. A. Ayeshamariam, V.S. Vidhya, S. Sivaranjani, M. Bououdina, R. PerumalSamy, M. Jayachandran, J. Nanoelectron. Optoelectron. 8, 273 (2013)

    Article  Google Scholar 

  18. D. Lan, M. Qin, R. Yang, S. Chen, H. Wu, Y. Fan, F. Zhang, J. Colloid Interface Sci. 533, 481 (2019)

    Article  ADS  Google Scholar 

  19. H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, F. Zhang, Powder Technol. 333, 153 (2018)

    Article  ADS  Google Scholar 

  20. C.P. Poole, H.A. Farach, R.J. Creswich, Superconductivity (Elsevier, Amsterdam, 1995)

    Google Scholar 

  21. Y. Xin, K.W. Wong, C.X. Fan, Z.Z. Sheng, F.T. Chan, Phys. Rev. B. 48, 557 (1993)

    Article  ADS  Google Scholar 

  22. U. Gottwick, K. Gloss, S. Horn, F. Steglich, N. Grewe, J. Magn. Magn. Mater. 47, 536 (1985)

    Article  ADS  Google Scholar 

  23. L. Forro, M. Raki, J.Y. Henry, C. Ayach, Solid State Commun. 69, 1097 (1989)

    Article  ADS  Google Scholar 

  24. E.M.M. Ibrahim, S.A. Saleh, S.A. Ahmed, Supercond. Sci. Technol. 21, 075001 (2008). https://doi.org/10.1088/0953-2048/21/7/075001

    Article  ADS  Google Scholar 

  25. L. Onsager, Phy. Rev. 37, 405 (1931)

    Article  ADS  Google Scholar 

  26. A.I. Abou-Aly, R. Awad, I.H. Ibrahim, W. Abdeen, Solid State Commun. 149, 281 (2009)

    Article  ADS  Google Scholar 

  27. J. Casquilho, P. Teixeira, Introduction to statistical physics (Cambridge University Press, Cambridge, 2014)

    MATH  Google Scholar 

  28. M.J. Madou, Solid-state physics fluidics and analytical techniques in micro-and nanotechnology, vol. 1 (CRC Press, Boca Raton, 2011)

    Book  Google Scholar 

  29. F.Rana,Free electron gas in 1D and 2D- ECE 4070: Physics of semiconductors and nanostructures, lecture handouts—Cornell University(2009) https://courses.cit.cornell.edu/mse5470/handout3.pdf

  30. U. Mizutani, Introduction to the electron theory of metals (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  31. Z.R. Jia, Z.G. Gao, D. Lan, Y.H. Cheng, G.L. Wu, H.J. Wu, Chin. Phys. B. 27, 117806 (2018)

    Article  ADS  Google Scholar 

  32. J.R. Cooper, S.D. Obertelli, A. Carrington, J.W. Loram, W.Y. Liang, Phys. C: Supercond. 185, 1265 (1991)

    Article  ADS  Google Scholar 

  33. N. Doiron-Leyraud, S. Lepault, O. Cyr-Choiniere, B. Vignolle, G. Grissonnanche, F. Laliberté, X. Zhao, Phys. Rev. 3, 021019 (2013)

    Article  Google Scholar 

  34. M.F. Crommie, A. Zettl, T.W. Barbee, M.L. Cohen, Phys. Rev. B. 37, 9734 (1988)

    Article  ADS  Google Scholar 

  35. M.N. Hlopkin, J. Toth, A.A. Sikov, E. Zsoldos, Solid State Commun. 68, 1011 (1988)

    Article  ADS  Google Scholar 

  36. X.A. Fan, J.Y. Yang, W. Zhu, S.Q. Bao, X.K. Duan, C.J. Xiao, K. Li, J. Alloys Compd. 461, 9 (2008)

    Article  Google Scholar 

  37. Y. Xiao, J. Yang, Q. Jiang, L. Fu, Y. Luo, D. Zhang, Z. Zhou, J. Electron. Mater. 45, 1266 (2016)

    Article  ADS  Google Scholar 

  38. Y. Xin, D. Ford, Z.Z. Sheng, Rev. Sci. Instrum. 63, 2263 (1992)

    Article  ADS  Google Scholar 

  39. H. Lüth, H. Ibach, Solid-state physics: an introduction to principles of materials science (Springer, Berlin, 2003)

    MATH  Google Scholar 

  40. Kuno, M. Introductory nanoscience. (2011)

    Book  Google Scholar 

  41. H. Garland Science Bruus, K. Flensberg, Many-body quantum theory in condensed matter physics: an introduction (Oxford University Press, Oxford, 2004)

    Google Scholar 

  42. D. Nowak, M.J. Lee, Phys. Rev. B 5, 2851 (1972)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Rahal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahal, H.T., Awad, R., Abdel-Gaber, A.M. et al. A comparative study on the influence of the addition of different nano-oxide particles on the thermopower of (Bi,Pb)-2223 superconductor. Appl. Phys. A 125, 365 (2019). https://doi.org/10.1007/s00339-019-2661-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2661-2

Navigation