Skip to main content
Log in

Dual-material dual-oxide double-gate TFET for improvement in DC characteristics, analog/RF and linearity performance

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To overcome the problem of fabrication complexity and to reducei the cost of microelectronic devices, a new concept of dual-material control gate with dual-oxide tunnel field-effect transistor is investigated. A stack gate approach is applied to reduce the width of tunneling barrier at source–channel junction. Use of dual oxides at source–channel interface provides improved capacitive coupling, which enhances the on-state current. The entire gate segment has been partitioned into three parts, namely tunnel gate \((M_1)\), control gate \((M_2)\) and auxiliary gate \((M_3)\) with different work functions such as \(\phi _{1}\), \(\phi _{2}\) and \(\phi _{3}\). In this context, to keep dual-work functionality, the feasible combinations of these work functions are adopted. Technology computer- aided design (TCAD) simulations of these proposed combinations of work functions along with dual oxides provide better results for the combinations of \((\phi _1=\phi _3<\phi _2)\). In addition, comparison between these combinations on the basis of analog/RF performance is done in this work. This work shows improved analog/RF parameters such as \(g_\text {m}, C_\text {gs}, C_\text {gd}, f_\text {T}\) and TFP, and linearity parameters including \(g_\text {m3}, \text {VIP3, IIP3}\) and \(\text {IMD3}\) for the proposed device DMDODG-TFET (dual-material dual-oxide double-gate TFET). The use of this proposed device structure reduces the ambipolar behavior and subthreshold swing \((18.5\,\text {mV}/\text {deacde})\), and enhances the on-current [\(3.6\times 10^{-5}\,(A/\upmu \text {m})\)] significantly, making it suitable for analog/RF and linearity applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Pinczuk, E. Burstein, Raman scattering from InSb surfaces at photon energies near the \(E_{\rm 1}\) energy gap. Phys. Rev. Lett. 21, 1073–1075 (1968)

    Article  ADS  Google Scholar 

  2. J.-P. Colinge, C.-W. Lee, A. Afzalian, Nanowire transistors without junctions. Nat. Nanotechnol 5, 225229 (2010)

    Article  Google Scholar 

  3. S.O. Koswatta, M.S. Lundstrom, D.E. Nikonov, Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Device 56, 456465 (2007)

    Google Scholar 

  4. A.C. Seabaugh, Q. Zhang, Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 20952110 (2010)

    Article  Google Scholar 

  5. W.Y. Choi, B.G. Park, J.D. Lee, Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743745 (2007)

    Google Scholar 

  6. P.F. Wang, K. Hilsenbeck, T. Nirschl, Complementary tunneling transistor for low power application. Solid-State Electron. 48(12), 22812286 (2004)

    Google Scholar 

  7. A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy efficient electronic switches. Nature 479(7373), 329337 (2011)

    Article  Google Scholar 

  8. A.M. Ionescu, L.D. Michielis, N. Dagtekin, Ultra low power emerging devices and their benefits for integrated circuits. Proc. IEEE IEDM, 16.1.116.1.4 (2011)

  9. The international technology roadmap for semiconductors. http://www.itrs.net

  10. M.R. William, A.J. Gehan, Silicon surface tunnel transistor. Appl. Phys. Lett. 67, 494496 (1995)

    Google Scholar 

  11. Q. Zhang, W. Zhao, A. Seabaugh, Low subthreshold swing tunnel transistors. IEEE Trans. Electron Device Lett. 27, 297300 (2006)

    Google Scholar 

  12. K. Boucart, A.M. Ionescu, Double gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 54, 17251733 (2007)

    Article  Google Scholar 

  13. R.M.I. Abadi, M. Saremi, A resonant tunneling nanowire field effect transistor with physical contractions: a negative differential resistance device for low power very large scale integration applications. J. Electron. Mater. 47, 10911098 (2018)

    Google Scholar 

  14. K. Nigam, S. Pandey, P.N. Kondekar, A barrier controlled charge plasma based TFET with gate engineering for ambipolar suppression and RF/linearity performance improvement. IEEE Trans. Electron Devices 64, 27512757 (2017)

    Article  Google Scholar 

  15. A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy efficient electronic switches. Nature/em 479, 329337 (2010)

    Google Scholar 

  16. W.Y. Choi, B.-G. Park, J.D. Lee, Tunneling field effect transistor with subthreshold swing (SS) less than 60 mV/Dec. IEEE Electron Device Lett. 28, 743745 (2007)

    Article  Google Scholar 

  17. R.M. Imenabadi, Mehdi Saremi, W.G. Vandenberghe, A novel PNPN like Z-shaped tunnel field-effect transistor with improved ambipolar behavior and RF performance. IEEE Trans. Electron Devices 64, 47524758 (2017)

    Google Scholar 

  18. A. Lahgere, C. Sahu, J. Singh, Electrically doped dynamically configurable field-effect transistor for low power and high-performance applications. Electron. Lett. 51, 12841286 (2015)

    Article  Google Scholar 

  19. K. Nigam, P.N. Kondekar, D. Sharma, A new approach for design and investigation of junctionless tunnel FET using electrically doped mechanism. Superlattices Microstruct. 98, 1–7 (2016)

    Article  ADS  Google Scholar 

  20. P.N. Kondekar, K. Nigam, S. Pandey, D. Sharma, Design and analysis of polarity controlled electrically doped tunnel FET with bandgap engineering for analog/RF applications. IEEE Trans. Electron Devices 64(2), 412–418 (2017)

    Article  ADS  Google Scholar 

  21. K. Nigam, P. kondekar, D. Sharma, Approach for ambipolar behaviour suppression in tunnel FET by workfunction engineering. Micro Nano Lett. 11(8), 460–464 (2016)

    Article  Google Scholar 

  22. A. Sarkar, A.K. Das, S. De, C.K. Sarkar, Effect of gate engineering in double-gate MOSFETs for analog/RF applications. Microelectron. J. 43(11), 873882 (2012)

    Article  Google Scholar 

  23. J. Madan, R. Chaujar, Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability. IEEE Trans. Device Mater. Reliab. 16, 227234 (2016)

    Article  Google Scholar 

  24. J.H. Huang, Z.H. Liu, M.C. Jeng, A physical model for MOSFET output resistance. Int. Electron Devices Meet. 13, 569–572 (1992)

    Article  ADS  Google Scholar 

  25. R. Nagar, M. Saxena, R.S. Gupta, M. Gupta, Linearity and analog performance analysis of double gate tunnel FET: effect of temperature and gate stack. Int. J. VLSI Design Commun. Syst. 2(3), 186–200 (2011)

    Google Scholar 

  26. A. Bansal, B.C. Paul, K. Roy, An analytical fringe capacitance model for interconnects using conformal mapping. IEEE Trans. CAD 25(12), 2765–2774 (2006)

    Article  Google Scholar 

  27. K.M.H. Badami, S. Karmalkar, Quasi-static compact model for coupling between aligned contacts on lnite substrates with insulating or conducting backplanes. IEEE Trans. CAD 31(06), 858–8674 (2012)

    Article  Google Scholar 

  28. S. Ahish, D. Sharma, Y.B.N. Kumar, M.H. Vasantha, Performance enhancement of novel InAs/Si hetero double-gate tunnel FET using Gaussian doping. IEEE Trans. Electron Devices 63(1), 288–295 (2016)

    Article  ADS  Google Scholar 

  29. T.C. Lim, Bernard, O. Rozeau, T. Ernst, B. Guillaurnot, N. Vulliet, C.B. Dufournet, M. Paccaud, S. Lepilliet, G. Dambrine, F. Dan- neville, A charge oriented model for MOS transistor capacitances. IEEE Trans. Electron Devices 56(7), 1473–1482 (1978)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyendra Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

339_2019_2650_MOESM1_ESM (JPG 43 KB)

339_2019_2650_MOESM1_ESM (JPG 81 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Singh, K.S., Nigam, K. et al. Dual-material dual-oxide double-gate TFET for improvement in DC characteristics, analog/RF and linearity performance. Appl. Phys. A 125, 353 (2019). https://doi.org/10.1007/s00339-019-2650-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2650-5

Navigation