Skip to main content
Log in

Effect of molar concentration on structural, magnetic domain and optical properties of BiFeO3 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pure crystalline bismuth ferrite BiFeO3 (BFO) thin films have been deposited on the cleaned glass substrate by sol–gel spin-coating technique with different molar concentrations (from 0.1 to 0.5 M) of the precursor solution. The influence of molar concentrations on the structural, magnetic and optical properties has been investigated by different advanced techniques. The X-ray diffraction patterns of BFO films revealed that the increase of the molar concentration from 0.1 to 0.5 M induced the structural transformation from distorted orthorhombic to single orthorhombic phase. The average crystallite size of BFO thin films was calculated using Scherrer formula and found to be in the range of 15–28 nm. The elemental composition of Bi, Fe and O was confirmed using energy-dispersive spectroscopy of X-rays. The atomic force microscopic images revealed that shape of particles are changing from ellipsoid to nanorods with increasing the molar concentration from 0.3 to 0.5 M. The root means square roughness of BFO films was also varying from 6.34 to 29.88 nm. The stripe-like structure of domain was explored through magnetic force microscopy. The films prepared from the precursor of molar concentration of 0.5 M revealed the microscopic remnant magnetization of 0.19 emu/cm3 and coercivity of 443.06 Oe from the MH measurements. This enhancement of ferromagnetic properties may be due to the formation of nanorods resulted by destroying the cycloid spin structure. The optical bandgaps were also tuned from 2.58 to 2.49 eV due to increase of the crystallite size from 15 to 28 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Ramesh, Emerging routes to multiferroics. Nature 461, 1218–1219 (2009)

    Article  ADS  Google Scholar 

  2. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

  3. N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)

    Article  Google Scholar 

  4. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    Article  ADS  Google Scholar 

  5. S.W. Cheong, M. Mostovoy, Multiferroics a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007)

    Article  ADS  Google Scholar 

  6. A. Reyes, A.C. de la Vega, M.E. Fuentes, L. Fuentes, BiFeO3 synchrotron radiation structure refinement and magnetoelectric geometry. J. Eur. Ceram. Soc. 27, 3709 (2007)

    Article  Google Scholar 

  7. S. Fujino, M. Murakami, S.-H. Lim, L.G. Salamanca-Riba, M. Wuttig, I. Takeuchia, Multiphase growth in Bi–Mn–O thin films. J. Appl. Phys. 101, 013903 (2007)

    Article  ADS  Google Scholar 

  8. Z.H. Sun, B.L. Cheng, S. Dai, L.Z. Cao, Y.L. Zhou, K.J. Jin, Z.H. Chen, G.Z. Yang, Dielectric property studies of multiferroic GaFeO3. J. Phys. D Appl. Phys. 39, 2481–2484 (2006)

    Article  Google Scholar 

  9. O.P. Vajk, M. Kenzelmann, J.W. Lynn, S.B. Kim, S.W. Cheong, Magnetic order and spin dynamics in ferroelectric HoMnO3. PRL 94, 087601 (2005)

    Article  ADS  Google Scholar 

  10. D. Senff, N. Aliouane, D.N. Argyriou, A. Hiess, L.P. Regnault, P. Link, K. Hradil, Y. Sidis, M. Braden, Magnetic excitations in a cycloidal magnet the magnon spectrum of multiferroic TbMnO3. J. Phys. Condens. Matter. 20, 434212 (2008)

    Article  ADS  Google Scholar 

  11. C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401 (2005)

    Article  ADS  Google Scholar 

  12. J.T. Haraldsena, A.V. Balatsky, Effects of magnetoelectric ordering due to interfacial symmetry breaking. Mater. Res. Lett. 1, 39–44 (2013)

    Article  Google Scholar 

  13. W. Ratcliff, J.W. Lynn, V. Kiryukhin, P. Jain, M.R. Fitzsimmons, Magnetic structures and dynamics of multiferroic systems obtained with neutron scattering. Nat. Commun. 1, 16003 (2016)

    Google Scholar 

  14. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, O. Eriksson, Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys. Rev. B 74, 224412 (2006)

    Article  ADS  Google Scholar 

  15. A.V. Trukhanov, V.O. Turchenko, I.A. Bobrikov, S.V. Trukhanov, I.S. Kazakevich, A.M. Balagurov, Crystal structure and magnetic properties of the BaFe12 – xAlxO19 (x = 0.1–1.2) solid solutions. J. Magn. Magn. Mater. 393, 253–259 (2015)

    Article  ADS  Google Scholar 

  16. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, Crystal structure and magnetic properties of the BaFe12 – xInxO19 (x = 0.1–1.2) solid solutions. J. Magn. Magn. Mater. 417, 130–136 (2016)

    Article  ADS  Google Scholar 

  17. S.V. Trukhanova, A.V. Trukhanova, V.G. Kostishyn, L.V. Panina, V.A. Turchenko, I.S. Kazakevich, An.V. Trukhanova, E.L. Trukhanov, V.O. Natarov, A.M. Balagurov, Thermal evolution of exchange interactions in lightly doped barium hexaferrites. J. Magn. Magn. Mater. 426, 554–562 (2017)

    Article  ADS  Google Scholar 

  18. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishyn, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, Structure and magnetic properties of BaFe11.9In0.1O19 hexaferrite in a wide temperature range. J. Alloys Compd. 689, 383–393 (2016)

    Article  Google Scholar 

  19. A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, I.S. Kazakevich, An.V. Trukhanov, E.L. Trukhanova, V.O. Natarov, V.A. Turchenko, M.M. Salem, A.M. Balagurov, Evolution of structure and magnetic properties for BaFe11.9Al0.1O19 hexaferrite in a wide temperature range. J. Magn. Magn. Mater. 426, 487–496 (2017)

    Article  ADS  Google Scholar 

  20. S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.G. Kostishyn, V.A. Turchenko, E.L. Trukhanova, An.V. Trukhanov, T.I. Zubar, V.M. Ivanov, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, D.S. Klygach, M.G. Vakhitov, P. Thakur, A. Thakur, Y. Yang, Temperature evolution of the structure parameters and exchange interactions in BaFe12 – xInxO19. J. Magn. Magn. Mater. 466, 393–405 (2018)

    Article  ADS  Google Scholar 

  21. X. Xu, W. Liu, H. Zhang, M. Guo, P. Wu, S. Wang, J. Gao, G. Rao, The abnormal electrical and optical properties in Na and Ni codoped BiFeO3 nanoparticles. J. Appl. Phys. 117, 174106 (2015)

    Article  ADS  Google Scholar 

  22. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    Article  ADS  Google Scholar 

  23. L.W. Martin, Y.H. Chu, M.B. Holcomb, M. Huijben, P. Yu, S.J. Han, D. Lee, S.X. Wang, R. Ramesh, Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 8, 2050–2055 (2008)

    Article  ADS  Google Scholar 

  24. V.A. Reddy, N.P. Pathak, R. Nath, Particle size dependent magnetic properties and phase transition in multiferroic BiFeO3 nano-particles. J. Alloy. Compd. 543, 206–212 (2012)

    Article  Google Scholar 

  25. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766–772 (2007)

    Article  ADS  Google Scholar 

  26. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 71, 014113 (2005)

    Article  ADS  Google Scholar 

  27. A.N. Morozovska, R.K. Vasudevan, P. Maksymovych, S.V. Kalinin, E.A. Eliseev, Anisotropic conductivity of uncharged domain walls in BiFeO3. Phys. Rev. B. Condens. Matter 86, 085315 (2012)

    Article  ADS  Google Scholar 

  28. A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, D.N. Chitanov, I.S. Kazakevich, A.V. Trukhanov, V.A. Turchenko, Strong correlation between magnetic and electrical subsystems in diamagnetically substituted hexaferrites ceramics. Ceram. Int. 43, 5635–5641 (2017)

    Article  Google Scholar 

  29. A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishin, L.V. Panina, M.M. Salem, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskii, D.A. Krivchenya, Multiferroic properties and structural features of M-type Al-substituted barium hexaferrites. Phys. Solid State 59, 737–745 (2017)

    Article  ADS  Google Scholar 

  30. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, An.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich, V.M. Ivanov, T.I. Zubar, M. Salem, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, Polarization origin and iron positions in indium doped barium hexaferrites. Ceram. Int. 44, 290–300 (2018)

    Article  Google Scholar 

  31. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, An.V. Trukhanov, D.I. Tishkevich, E.L. Trukhanova, T.I. Zubar, D.V. Karpinsky, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, E.A. Trofimov, P. Thakur, A. Thakur, Y. Yang, Magnetic and dipole moments in indium doped barium hexaferrites. J. Magn. Magn. Mater. 457, 83–96 (2018)

    Article  ADS  Google Scholar 

  32. X.W. Tang, J.M. Dai, X.B. Zhu, J.C. Lin, Q. Chang, D.J. Wu, W.H. Song, Y.P. Sun, Thickness-dependent dielectric, ferroelectric, and magneto dielectric properties of BiFeO3 thin films derived by chemical solution deposition. J. Am. Ceram. Soc. 95, 538–544 (2012)

    Article  Google Scholar 

  33. J.P. de la Cruz, E. Joanni, P.M. Vilarinho, A.L. Kholkin, Thickness effect on the dielectric, ferroelectric, and piezoelectric properties of ferroelectric lead zirconate titanate thin films. J. Appl. Phys. 108, 114106 (2010)

    Article  ADS  Google Scholar 

  34. T.M. Shaw, S. Trolier-McKinstry, P.C. McIntyre, The properties of ferroelectric films at small dimensions. Annu. Rev. Mater. Sci. 30, 263–298 (2000)

    Article  ADS  Google Scholar 

  35. R. Kretschmer, K. Binder, Surface effects on phase-transitions in ferroelectrics and dipolar magnets. Phys. Rev. B 20, 1065–1076 (1979)

    Article  ADS  Google Scholar 

  36. J.P. Zhou, R.J. Xiao, Y.X. Zhang, Z.H. Shi, G.Q. Zhu, Novel behaviors of single crystalline BiFeO3 nanorods hydrothermally synthesized under magnetic field. J. Mater. Chem. C. 3, 6924–6931 (2015)

    Article  Google Scholar 

  37. W.J. Luo, D.L. Wang, F.W. Wang, T. Liu, J.W. Cai, L.Y. Zhang, Y.L. Liu, Room temperature simultaneously enhanced magnetization and electric polarization in BiFeO3 ceramic synthesized by magnetic annealing. Appl. Phys. Lett. 94, 202507 (2009)

    Article  ADS  Google Scholar 

  38. X.W. Tang, J.M. Dai, X.B. Zhu, H.C. Lei, L.H. Yin, W.H. Song, Y.L. Cheng, D.J. Wu, Y.P. Sun, Magnetic field annealing effects on self-oriented BiFeO3 thin films prepared by chemical solution deposition. J. Magn. Magn. Mater. 322, 2647–2652 (2010)

    Article  ADS  Google Scholar 

  39. S.K. Jim, J.W. Jeong, J.W. Lee, S.C. Shin, Enhancement of saturation magnetization in epitaxial (111) BiFeO3 films by magnetic annealing. Thin Solid Films 517, 2749–2752 (2009)

    Article  ADS  Google Scholar 

  40. Y. Wang, R. Zheng, C. Sim, J. Wang, Charged defects and their effects on electrical behaviour in Bi1 – xLaxFeO3 thin films. J. Appl. Phys. 105, 016106 (2009)

    Article  ADS  Google Scholar 

  41. W.H. Kim, J.Y. Son, The effects of La substitution on ferroelectric domain structure and multiferroic properties of epitaxially grown BiFeO3 thin films. Appl. Phys. Lett. 103, 132907 (2013)

    Article  ADS  Google Scholar 

  42. N.V. Minh, D.V. Thang, Dopant effects on the structural, optical and electromagnetic properties in multiferroic Bi1 – xYxFeO3 ceramics. J. Alloy. Comp. 505, 619–622 (2010)

    Article  Google Scholar 

  43. A. Gautam, V.S. Rangra, Effect of Ba ions substitution on multiferroic properties of BiFeO3 perovskite. Cryst. Res. Technol. 45, 953–956 (2010)

    Article  Google Scholar 

  44. P.C. Sati, M. Kumar, S. Chhoker, Low temperature ferromagnetic ordering and dielectric properties of Bi1 – xDyxFeO3 ceramics. Ceram. Int. 41, 3227–3236 (2015)

    Article  Google Scholar 

  45. B. Bhushan, Z. Wang, J. van Tol, N.S. Dalal, A. Basumallick, N.Y. Vasanthacharya, S. Kumar, D. Das, Tailoring the magnetic and optical properties of nanocrystalline BiFeO3 by Ce doping. J. Am. Ceram. Soc. 95, 1985–1992 (2012)

    Article  Google Scholar 

  46. R. Das, K. Mandal, Magnetic, ferroelectric and magnetoelectric properties of Ba-doped BiFeO3. J. Magn. Mater. 324, 1913–1918 (2012)

    Article  ADS  Google Scholar 

  47. W. Liu, G. Tan, G. Dong, X. Yan, W. Ye, H. Ren, A. Xia, Structure transition and multiferroic properties of Mn-doped BiFeO3 thin films. J. Mater. Sci. Mater. Electron. 25, 723–729 (2014)

    Article  Google Scholar 

  48. J. Wu, J. Wang, D. Xiao, J. Zhu, Migration kinetics of oxygen vacancies in Mn-modified BiFeO3 thin films. ACS Appl. Mater. Interfaces 3, 2504–2511 (2011)

    Article  Google Scholar 

  49. H. Naganuma, J. Miura, S. Okamura, Annealing temperature effect on ferroelectric and magnetic properties in Mn-added polycrystalline BiFeO3 films. J. Electroceram. 22, 203–208 (2009)

    Article  Google Scholar 

  50. D. Kothari, V.R. Reddy, A. Gupta, D.M. Phase, N. Lakshmi, S.K. Deshpande, A.M. Awasthi, Study of the effect of Mn doping on the BiFeO3 system. J. Phys. Conden. Matter. 19, 136202 (2007)

    Article  ADS  Google Scholar 

  51. S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyala, H. Singh, M. Jewariya, K.L. Yadav, Multiferroic, magnetoelectric and optical properties of Mn doped BiFeO3 nanoparticles. Solid State Commun. 152, 525 (2012)

    Article  ADS  Google Scholar 

  52. T. Kawae, H. Tsuda, H. Naganuma, S. Yamada, M. Kumeda, S. Okamura, A. Morimoto, Composition dependence in BiFeO3 film capacitor with suppressed leakage current by Nd and Mn cosubstitution and their ferroelectric properties. Jpn. J. Appl. Phys. 47, 7586–7589 (2008)

    Article  ADS  Google Scholar 

  53. F. Yan, G. Zhao, N. Song, N. Zhao, Y. Chen, In situ synthesis and characterization of fine- patterned La and Mn co-doped BiFeO3 film. J. Alloys Compd. 570, 19–22 (2013)

    Article  Google Scholar 

  54. J. Kolte, A. Daryapurkar, P. Apte, P. Gopalan, Structural and electrical characterization of La and Mn co-substituted bismuth ferrite thin films. Ferroelectrics 448, 42–49 (2013)

    Article  Google Scholar 

  55. H. Liu, P. Yang, K. Yao, J. Wang, Twinning rotation and ferroelectric behaviour of epitaxial BiFeO3 (001) thin film. Appl. Phys. Lett. 96, 012901 (2010)

    Article  ADS  Google Scholar 

  56. A.R. Venkateswarlu, G.D. Varma, R. Nath, Optical and electrical properties of spray pyrolysis deposited nano-crystalline BiFeO3 films. AIP Adv. 1, 042140 (2011)

    Article  ADS  Google Scholar 

  57. D. Huang, H. Deng, P. Yang, J. Chu, Optical and electrical properties of multiferroic bismuth ferrite thin films fabricated by sol–gel technique. Mater. Lett. 64, 2233–2235 (2010)

    Article  Google Scholar 

  58. J. Liua, H. Dengb, L. Zhua, K. Zhanga, X. Menga, H. Caoa, P. Yanga, J. Chu, Structure, optical and magnetic properties of Bi1 – xEuxFeO3 films fabricated by pulsed laser deposition. Appl. Surf. Sci. 316, 78–81 (2014)

    Article  ADS  Google Scholar 

  59. F. Huang, X. Lu, W. Lin, X. Wu, Y. Kan, J. Zhu, Effect of Nd dopant on magnetic and electric properties of BiFeO3 thin films prepared by metal organic deposition method. Appl. Phys. Lett. 89, 242914 (2006)

    Article  ADS  Google Scholar 

  60. H. Yang, Y.Q. Wang, H. Wang, Q.X. Jia, Oxygen concentration and its effect on the leakage current in BiFeO3 thin films. Appl. Phys. Lett. 96, 012909 (2010)

    Article  ADS  Google Scholar 

  61. S.K. Singh, H. Ishiwara, Reduced leakage current in BiFeO3 thin films on Si substrates formed by a chemical solution method. Jpn. J. Appl. Phys. 44, 734–736 (2005)

    Article  ADS  Google Scholar 

  62. S.Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan, D.G. Schlom, Y.J. Lee, Y.H. Chu, M.P. Cruz, Q. Zhan, T. Zhao, R. Ramesh, Metallorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications. Appl. Phys. Lett. 87, 102903 (2005)

    Article  ADS  Google Scholar 

  63. J.F. Ihlefeld, N.J. Podraza, Z.K. Liu, R.C. Rai, X. Xu, T. Heeg, Y.B. Chen, J. Li, R.W. Collins, J.L. Musfeldt, X.Q. Pan, J. Schubert, R. Ramesh, D.G. Schlom, Optical band gap of BiFeO3 grown by molecular-beam epitaxy. Appl. Phys. Lett. 92, 142908 (2008)

    Article  ADS  Google Scholar 

  64. P.S.V. Mocherla, C. Karthik, R. Ubic, M.S. Ramachandra Rao, C. Sudakar, Tunable band gap in BiFeO3 nanoparticles, the role of microstrain and oxygen defects. Appl. Phys. Lett. 103, 022910 (2013)

    Article  ADS  Google Scholar 

  65. R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, F. Zavaliche, S.Y. Yang, R. Ramesh, Y.B. Chen, X.Q. Pan, X. Ke, M.S. Rzchowski, S.K. Streiffer, Synthesis and ferroelectric properties of epitaxial BiFeO3 thin films grown by sputtering. Appl. Phys. Lett. 88, 242904 (2006)

    Article  ADS  Google Scholar 

  66. Y. Wang, Q. Jiang, H. He, C.-W. Nan, Multiferroic BiFeO3 thin films prepared via a simple sol-gel method. Appl. Phys. Lett. 88, 142503 (2006)

    Article  ADS  Google Scholar 

  67. J. Wang, Y. Wei, J. Zhang, L. Ji, Y. Huang, Z. Chen, Synthesis of pure-phase BiFeO3 nanopowder by nitric acid-assisted gel. Mater. Lett. 124, 242–244 (2014)

    Article  Google Scholar 

  68. S.K. Singh, R. Ueno, H. Funakubo, H. Uchida, S. Koda, H. Ishiwara, Dependence of ferroelectric properties on thickness of BiFeO3 thin films fabricated by chemical solution deposition. Jpn. J. Appl. Phys. 44, 12 (2005)

    Article  Google Scholar 

  69. A. Huang, S.R. Shannigrahi, Effect of bottom electrode and resistive layer on the dielectric and ferroelectric properties of sol-gel derived BiFeO3 thin films. J. Alloys Compd. 509, 2054–2059 (2011)

    Article  Google Scholar 

  70. S. Sharma, P. Saravanan, O.P. Pandey, V.T.P. Vinod, M. Cernik, P. Sharma, Magnetic behaviour of sol-gel driven BiFeO3 thin films with different grain size distribution. J. Magn. Magn. Mater. 401, 180–187 (2016)

    Article  ADS  Google Scholar 

  71. S. Zheng, J. Wang, J. Zhang, H. Ge, Z. Chen, Y.F. Gao, The structure and magnetic properties of pure single phase BiFeO3 nanoparticles by microwave-assisted sol–gel method. J. Alloys Compd. 735, 945–949 (2018)

    Article  Google Scholar 

  72. H. Wu, P. Xue, Y. Lu, X. Zhu, Microstructural, optical and magnetic characterizations of BiFeO3 multiferroic nanoparticles synthesized via a sol–gel process. J. Alloys Compd. 731, 471–477 (2018)

    Article  Google Scholar 

  73. S. Iakovlev, C.-H. Solterbeck, M. Kuhnke, M. Es-Sounia, Multiferroic BiFeO3 thin films processed via chemical solution deposition: structural and electrical characterization. J. Appl. Phys. 97, 094901 (2005)

    Article  ADS  Google Scholar 

  74. P. Khare, S. Talebi, B. Ramachandran, A. Dixit, V.M. Naik, M.B. Sahana, C. Sudakar, R. Naik, M.S.R. Rao, G. Lawes, Structural, magnetic, and electrical studies on polycrystalline transition-metal-doped BiFeO3 thin films. J. Phys. Condens. Matter. 21, 036001 (2009)

    Article  ADS  Google Scholar 

  75. S.K. Singha, H. Ishiwara, Enhanced polarization and reduced leakage current in BiFeO3 thin films fabricated by chemical solution deposition. J. Appl. Phys. 100, 064102 (2006)

    Article  ADS  Google Scholar 

  76. S.W. Chen, J.M. Wu, Unipolar resistive switching behaviour of BiFeO3 thin films prepared by chemical solution deposition. Thin Solid Films 519, 499–504 (2010)

    Article  ADS  Google Scholar 

  77. Y. Wang, Y. Lin, C.-W. Nan, Thickness dependent size effect of BiFeO3 films grown on LaNiO3-buffered Si substrates. J. Appl. Phys. 104, 123912 (2008)

    Article  ADS  Google Scholar 

  78. X. Chena, H. Zhang, K. Ruan, W. Shi, Annealing effect on the bipolar resistive switching behaviours of BiFeO3 thin films on LaNiO3-buffered Si substrates. J. Alloys Compd. 529, 108–112 (2012)

    Article  Google Scholar 

  79. A.J. Hatt, N.A. Spaldin, Strain-induced isosymmetric phase transition in BiFeO3. Phys. Rev. B 81, 054109 (2010)

    Article  ADS  Google Scholar 

  80. S.V. Trukhanov, I.O. Troyanchuk, I.M. Fita, H. Szymczak, K. Bärner, Comparative study of the magnetic and electrical properties of Pr1 – xBaxMnO3 – δ manganites depending on the preparation conditions. J. Magn. Magn. Mater. 237, 276–282 (2001)

    Article  ADS  Google Scholar 

  81. S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, I.O. Troyanchuk, H. Szymczak, Magnetic phase transitions in the anion-deficient La1 – xBaxMnO3–x/2 (0 ≤ x ≤ 0.50) manganites. J. Phys. Condens. Matter. 15, 1783–1795 (2003)

    Article  ADS  Google Scholar 

  82. S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, C.E. Botez, A. Adair, Magnetotransport properties and mechanism of the A-site ordering in the Nd–Ba optimal-doped manganites. J. Low Temp. Phys. 149, 185–199 (2007)

    Article  ADS  Google Scholar 

  83. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependant magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766–772 (2007)

    Article  ADS  Google Scholar 

  84. J. Santoyo-Salazar, M.A. Castellanos-Roman, L. Beatriz, Gómez, Structural and magnetic domains characterization of magnetite nanoparticles. Mater. Sci. Eng. C 27, 1317–1320 (2007)

    Article  Google Scholar 

  85. S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, H. Szymczak, Frustrated exchange interactions formation at low temperatures and high hydrostatic pressures in La0.70Sr0.30MnO2.85. JETP 111, 209–214 (2010)

    Article  ADS  Google Scholar 

  86. S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, A.M. Balagurov, H. Szymczak, Magnetic state of the structural separated anion-deficient La0.70Sr0.30MnO2.85 manganite. JETP 113, 819–825 (2011)

    Article  ADS  Google Scholar 

  87. C.J. Cheng, C. Lu, Z. Chen, L. You, L. Chen, J. Wang, T. Wu, Thickness-dependent magnetism and spin-glass behaviors in compressively strained BiFeO3 thin films. Appl. Phys. Lett. 98, 242502 (2011)

    Article  ADS  Google Scholar 

  88. F. Huang, Z. Wang, X. Lu, J. Zhang, K. Min, W. Lin, R. Ti, T.T. Xu, J. He, C. Yue, Z. Zhu, Peculiar magnetism of nanoparticles with size approaching the period of the spiral spin structure. Sci. Rep. 3, 2907 (2013)

    Article  ADS  Google Scholar 

  89. R. Gupta, S. Chaudhary, R.K. Kotnala, Interfacial charge induced magnetoelectric coupling at BiFeO3/BaTiO3 bilayer interface. ACS Appl. Mater. Interfaces 7, 8472–8479 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We are very much grateful to Prof. O. N. Srivastava, Department of Physics, Banaras Hindu University, India, for fruitful discussions. The authors are also thankful to the UGC-DAE-CSR at Indore and Inter-University Accelerator Centre (IUAC), New Delhi, India, for providing the various characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Das.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awasthi, R.R., Asokan, K. & Das, B. Effect of molar concentration on structural, magnetic domain and optical properties of BiFeO3 thin films. Appl. Phys. A 125, 338 (2019). https://doi.org/10.1007/s00339-019-2560-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2560-6

Navigation