Skip to main content

Advertisement

Log in

The remarkable morphology regulatory effect of NH4+ ions on TiO2 nanorod arrays and their application in dye-sensitized solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nitrogen doping is often used to expand the response range of wide-bandgap semiconductors to improve their photoelectrical properties. Unique morphology regulatory effect of NH4+ ions on one-dimensional TiO2 nanorod arrays (TNAs) is proved in this research for the first time, but nitrogen-doping effect is hardly detected. Once NH4Cl is added, the growth of TNAs is greatly promoted especially in radial direction, but little amount of nitrogen from NH4+ ions can enter the modified TNAs (N-TNAs). Furthermore, the bandgap energy of N-TNAs is almost unchanged compared with TNAs, meaning that trace nitrogen doping does not affect response ability to irradiation. When fabricated into dye-sensitized solar cells (DSSCs) with N-TNAs, the optimal photoelectrical conversion efficiency (3.16%) is nearly twice that with TNAs (1.62%). It is worth noting that the increased efficiency mainly results from the photoinduced current but not voltage. Second, the change of conversion efficiency is related to nanorod length. In summary, the improvement of photoelectrical property is caused by the directional growth of nanorods, which results from the addition of NH4+ ions as an effective structure regulatory agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. O’regan, M. Grätzel, Nature 353, 737 (1991)

    Article  ADS  Google Scholar 

  2. M. Grätzel, J. Photochem. Photobiol. A 164, 3 (2004)

    Article  Google Scholar 

  3. Y. Li, J. Wang, H. Sun, B. Wei, ACS Appl. Mater. Interfaces 10, 11580 (2018)

    Article  Google Scholar 

  4. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 388, 431 (1997)

    Article  ADS  Google Scholar 

  5. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Article  Google Scholar 

  6. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  Google Scholar 

  7. Y. Li, J. Wang, X. Liu, C. Shen, K. Xie, B. Wei, ACS Appl. Mater. Interfaces 9, 31691 (2017)

    Article  Google Scholar 

  8. Y. Gao, Y. Feng, B. Zhang, F. Zhang, X. Peng, L. Liu, S. Meng, RSC Adv. 4, 16992 (2014)

    Article  Google Scholar 

  9. X. Zhang, B. Zhang, Z. Zuo, M. Wang, Y. Shen, J. Mater. Chem. A 3, 10020 (2015)

    Article  Google Scholar 

  10. S. Shogh, R. Mohammadpour, N. Taghavinia, Mater. Res. Bull. 72, 64 (2015)

    Article  Google Scholar 

  11. Y. Chen, B. Zhang, Y. Feng, Res. Chem. Intermediat. 42, 6705 (2016)

    Article  Google Scholar 

  12. W. Guo, Y. Shen, L. Wu, Y. Gao, T. Ma, J. Phys. Chem. C 115, 21494 (2011)

    Article  Google Scholar 

  13. E. Şennik, Z. Colak, N. Kılınç, Z.Z. Öztürk, Int. J. Hydrogen Energy 35, 4420 (2010)

    Article  Google Scholar 

  14. O.K. Varghese, M. Paulose, C.A. Grimes, Nat. Nanotechnol. 4, 592 (2009)

    Article  ADS  Google Scholar 

  15. A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Small 5, 104 (2009)

    Article  Google Scholar 

  16. D. Wang, Y. Liu, B. Yu, F. Zhou, W. Liu, Chem. Mater. 21, 1198 (2009)

    Article  Google Scholar 

  17. Z. Zhang, L. Zhang, M.N. Hedhili, H. Zhang, P. Wang, Nano Lett. 13, 14 (2012)

    Article  ADS  Google Scholar 

  18. J. Tang, A.J. Cowan, J.R. Durrant, D.R. Klug, J. Phys. Chem. C 115, 3143 (2011)

    Article  Google Scholar 

  19. Z. Zheng, B. Huang, X. Qin, X. Zhang, Y. Dai, M.H. Whangbo, J. Mater. Chem. 21, 9079 (2011)

    Article  Google Scholar 

  20. S.W. Lee, K.S. Ahn, K. Zhu, N.R. Neale, A.J. Frank, J. Phys. Chem. C 116, 21285 (2012)

    Article  Google Scholar 

  21. Y. Cui, L. Zhang, K. Lv, G. Zhou, Z.S. Wang, J. Mater. Chem. A 3, 4477 (2015)

    Article  Google Scholar 

  22. W.Q. Wu, Y.F. Xu, H.S. Rao, C.Y. Su, D.B. Kuang, J. Phys. Chem. C 118, 16426 (2014)

    Article  Google Scholar 

  23. Y. Ding, L.E. Mo, L. Tao, Y.M. Ma, L.H. Hu, Y. Huang, S.Y. Dai, J. Power Sources 272, 1046 (2014)

    Article  ADS  Google Scholar 

  24. J. Lin, Y.U. Heo, A. Nattestad, Y. Yamauchi, S.X. Dou, J.H. Kim, Electrochim. Acta 153, 393 (2015)

    Article  Google Scholar 

  25. H. Asgari Moghaddam, S. Jafari, M.R. Mohammadi, New J. Chem. 41, 9453 (2017)

    Article  Google Scholar 

  26. K.S. Dhonde, M. Dhonde, V.V.S. Murty, Sol. Energy 173, 551 (2018)

    Article  ADS  Google Scholar 

  27. H. Tian, L. Hu, C. Zhang, W. Liu, Y. Huang, L. Mo, S. Dai, J. Phys. Chem. C 114, 1627 (2010)

    Article  Google Scholar 

  28. Y. Li, Q. Sun, S. Ma, M. Zhang, Q. Liu, L. Dong, ECS J. Solid State Sci. 4, Q17 (2015)

    Article  ADS  Google Scholar 

  29. I. Chung, B. Lee, J. He, R.P. Chang, M.G. Kanatzidis, Nature 485, 486 (2012)

    Article  ADS  Google Scholar 

  30. Q. Sun, Y. Hong, Q. Liu, M. Zhang, L. Yu, L. Dong, Mater. Res. Express 4, 075023 (2017)

    Article  ADS  Google Scholar 

  31. Y. Dong, Y. Zhao, Y. Chen, Y. Feng, M. Zhu, C. Ju, J. Xu, J. Mater. Sci. 53, 8921 (2018)

    Article  ADS  Google Scholar 

  32. P.F. Zeni, D.P.D. Santos, R.R. Canevarolo, J.A. Yunes, F.F. Padilha, R.L.C. Júnior, M.L. Hernández-Macedo, J Nanosci. Nanotechnol. 18, 3722 (2018)

    Article  Google Scholar 

  33. Y.K. Lai, J.Y. Huang, H.F. Zhang, V.P. Subramaniam, Y.X. Tang, D.G. Gong, C.J. Lin, J. Hazard. Mater. 184, 855 (2010)

    Article  Google Scholar 

  34. P. Romero-Gomez, V. Rico, A. Borrás, A. Barranco, J.P. Espinós, J. Cotrino, A.R. González-Elipe, J. Phys. Chem. C 113, 13341 (2009)

    Article  Google Scholar 

  35. Q. Sun, X. Sun, Y. Li, L. Yu, L. Dong, Sci. Adv. Mater. 5, 1221 (2013)

    Article  Google Scholar 

  36. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Electrochim. Acta 47, 4213 (2002)

    Article  Google Scholar 

  37. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, P.R. Bueno, J. Electroanal. Chem. 475, 152 (1999)

    Article  Google Scholar 

  38. B. Lee, D.B. Buchholz, P. Guo, D.K. Hwang, R.P. Chang, J. Phys. Chem. C 115, 9787 (2011)

    Article  Google Scholar 

  39. H.S. Kim, J.W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, N.G. Park, Nano Lett. 13, 2412 (2013)

    Article  ADS  Google Scholar 

  40. J. Zhou, L. Yin, K. Zha, H. Li, Z. Liu, J. Wang, B. Feng, Appl. Surf. Sci. 367, 118 (2016)

    Article  ADS  Google Scholar 

  41. Z. Hu, D. Chen, X. Zhan, F. Wang, L. Qin, Y. Huang, Appl. Phys. A 123, 399 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (21776147, 21606140, and 61604086), the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment (SKLPEE-KF201707) at Fuzhou University, the Department of Science and Technology of Shandong Province (2016GGX104010 and ZR2018BB066), and the Department of Education of Shandong Province (J16LA14 and J17KA013). L. F. Dong also thanks financial support from the Malmstrom Endowment Fund of Hamline University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiong Sun, Lina Sui or Lifeng Dong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Sun, Q., Wu, S. et al. The remarkable morphology regulatory effect of NH4+ ions on TiO2 nanorod arrays and their application in dye-sensitized solar cells. Appl. Phys. A 125, 245 (2019). https://doi.org/10.1007/s00339-019-2537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2537-5

Navigation