Skip to main content
Log in

Mullite membrane coatings: antibacterial activities of nanosized TiO2 and Cu-grafted TiO2 in the presence of visible light illumination

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Porous mullites used as ceramic membranes were fabricated and coated with TiO2 and 0.1 wt% Cu(II)-grafted TiO2 powders. A spinning coating technique was applied for the coating process. Antibacterial activities of the coated mullites were tested against pathogenic bacteria Escherichia coli (E. coli) by following the experimental methods of ISO 17094:2014 standardized for testing photocatalyst materials under visible light of a florescent lamp as an indoor-tested condition. Mullites without coatings were used as control samples. After 4 h of light exposure, the number of the initially viable bacteria increased significantly for the uncoated mullites and decreased for all of the coated mullites. Coating layers of TiO2 and Cu-grafted TiO2 could inactivate E. coli under light illumination. In dark condition, 0.1 wt% Cu(II)-grafted TiO2 coating on the mullites could inactivate the bacteria, while TiO2 coating on the mullites could not inactivate the bacteria. The experimental results provide a possibility of using the coated mullites for disinfection applications. Bacterial inactivation mechanisms of TiO2 and Cu-grafted TiO2 in coating layers were investigated and discussed in terms of microstructural observation on the coating layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Vohra, D.Y. Goswami, D.A. Deshpande, S.S. Block, Enhanced photocatalytic disinfection of indoor air. Appl. Catal. B-Environ. 65, 57–65 (2006)

    Article  Google Scholar 

  2. S.H. Shah, Spectroscopic analysis of ultraviolet lamps for disinfection of air in hospitals. Water Air Soil Pollut. Focus 9, 529–537 (2009)

    Article  Google Scholar 

  3. A.C. Anderson, R.S. Reimers, P. deKernion, A brief review of the current status of alternatives of chlorine disinfection of water. Am. J. Public Health 72(11), 1290–1293 (1982)

    Article  Google Scholar 

  4. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(7), 37–38 (1972)

    Article  ADS  Google Scholar 

  5. C. Chung, H. Lin, H. Tsou, Z. Shi, J. He, An antimicrobial TiO2 coating for reducing hospital-acquired infection. J. Biomed. Mater. Res. B. 85B, 220–224 (2008)

    Article  Google Scholar 

  6. V. Caratto, B. Aliakbarian, A.A. Casazza, L. Setti, C. Bernini, P. Perego, M. Ferretti, Inactivation of Escherichia coli on anatase and rutile nanoparticles using UV and fluorescent light. Mater. Res. Bull. 48, 2095–2101 (2013)

    Article  Google Scholar 

  7. B. Sohm, F. Immel, P. Bauda, C. Pagnout, Insight into the primary mode of action of TiO2 nanoparticles on Escherichia coli the dark. Proteomics 15, 98–113 (2015)

    Article  Google Scholar 

  8. F. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008)

    Article  ADS  Google Scholar 

  9. S.S. Alias, Z. Harun, I.S.A. Latif, Characterization and performance of porous photocatalytic ceramic membranes coated with TiO2 via different dip-coating routes. J. Mater. Sci. 53, 11534–11552 (2018)

    Article  ADS  Google Scholar 

  10. M.R. Dhananjeyan, E. Mielczarski, K.R. Thampi, M. Buffat, PH Bensimon, A. Kulik, J. Mielczarski, J. Kiwi, Photodynamics and surface characterization of TiO2 and Fe2O3 photocatalysts immobilized on modified polyethylene films. J. Phys. Chem. B. 105, 12046–12055 (2001)

    Article  Google Scholar 

  11. N.N. Bahrudin, M.A. Nawi, Immobilized titanium dioxide/powdered activated carbon system for the photocatalytic adsorptive removal of phenol. Korean J. Chem. Eng. 35(7), 1532–1541 (2018)

    Article  Google Scholar 

  12. L. Caballero, K.A. Whitehead, N.S. Allen, J. Verran, Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light. J. Photochem. Photobiol. A Chem. 202, 92–98 (2009)

    Article  Google Scholar 

  13. M. Liu, X. Qiu, K. Hashimoto, M. Miyauchi, Cu (II) nanocluster-grafted, Nb-doped TiO2 as an efficient visible-light-sensitive photocatalyst based on energy-level matching between surface and bulk states. J. Mater. Chem. A. 2, 13571–13579 (2014)

    Article  Google Scholar 

  14. M. Liu, K. Sunada, K. Hashimoto, M. Miyauchi, Visible-light sensitive Cu(II)–TiO2 with sustained anti-viral activity for efficient indoor environmental remediation. J. Mater. Chem. A. 3, 17312–17319 (2015)

    Article  Google Scholar 

  15. ISO 27447: Fine ceramics (advanced ceramics, advanced technical ceramics)—test method for antibacterial activity of semiconducting photocatalytic materials. International Organization for Standardization (ISO), Berlin (2009)

    Google Scholar 

  16. L. Janovák, Á Deák, S.P. Tallóy, D. Sebők, E. Csapó, K. Bohinc, A. Abram, I. Pálinkó, I. Dékány, Hydroxyapatite-enhanced structural, photocatalytic and antibacterial properties of photoreactive TiO2/Hap/polyacrylate hybrid thin films. Surf. Coat. Technol. 326, 316–326 (2017)

    Article  Google Scholar 

  17. ISO 17094: Fine ceramics (advanced ceramics, advanced technical ceramics)—test method for antibacterial activity of semiconducting photocatalytic materials under indoor lighting environment. International Organization for Standardization (ISO), Berlin (2014)

    Google Scholar 

  18. W. Singhapong, P. Srinophakun, A. Jaroenworaluck, Influence of pore characteristics on the properties of porous mullite ceramics. J. Aust. Ceram. Soc. 53, 811–820 (2017)

    Article  Google Scholar 

  19. E.R. Sanders, Aseptic laboratory techniques: plating methods. J. Vis. Exp. 63, e3064–e3081 (2012)

    Google Scholar 

  20. B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley Publishing Inc., Massachusetts, 1956)

    Google Scholar 

  21. T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2. J. Raman. Spectrosc. 7(6), 321–324 (1978)

    Article  ADS  Google Scholar 

  22. S.P.S. Porto, P.A. Fleury, T.C. Damen, Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2. Phys. Rev. 154(2), 522–526 (1967)

    Article  ADS  Google Scholar 

  23. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Handbook of heterogeneous catalysis. Reporting physisorption data for gas/solid systems, pp. 1217–1230. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  24. A. Jaroenworaluck, W. Sunsaneeyametha, N. Kosachan, R. Stevens, Characteristics of silica-coated TiO2 and its UV absorption for sunscreen cosmetic applications. Surf. Interface Anal. 38, 473–477 (2006)

    Article  Google Scholar 

  25. R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J. Sol–Gel Sci. Technol. 61, 1–7 (2012)

    Article  Google Scholar 

  26. U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. C Photochem. Rev. 9, 1–12 (2008)

    Article  Google Scholar 

  27. N. Mitik-Dineva, J. Wang, V.K. Troung, P. Stoddart, F. Malherbe, R.J. Crawford, E.P. Ivanova, Escherichia E. coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Curr. Microbiol. 58, 268–273 (2009)

    Article  Google Scholar 

  28. S. Chen, Y. Guo, S. Chen, Z. Ge, H. Yang, J. Tang, Fabrication of Cu/TiO2 nanocomposite: toward an enhanced antibacterial performance in the absence of light. Mater. Lett. 83, 154–157 (2012)

    Article  Google Scholar 

  29. K. Sunada, M. Minoshima, K. Hashimoto, Highly efficient antiviral and antibacterial activities of solid-state cuprous compounds. J. Hazard. Mater. 235–236, 265–270 (2012)

    Article  Google Scholar 

  30. S. Leong, A. Razmjou, K. Wang, K. Hapgood, X. Zhang, H. Wang, TiO2 based photocatalytic membranes: a review. J. Membrane Sci. 472, 167–184 (2014)

    Article  Google Scholar 

  31. K. Sunada, T. Watanabe, K. Hashimoto, Studies on photokilling of bacteria on TiO2 thin film. J. Photochem. Photobiol. A Chem. 156, 227–233 (2003)

    Article  Google Scholar 

  32. S. Neuville, Transient transverse electrical field induced by selective adsorbtion on low gap semiconducting thin films. Sens. Actuator B-Chem. 121, 436–444 (2007)

    Article  Google Scholar 

  33. X. Lin, J. Li, S. Ma, G. Liu, K. Yang, M. Tong, D. Lin, Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry. PLoS One 9(10), e110247–e110254 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Metal and Materials Technology Center-National Science and Technology Development Agency (Grant number P-13-00697) and the European Commission under the PCATDES-FP7 (Grant number 309846). Thailand Advanced Institute of Science and Technology and Tokyo Institute of Technology (TAIST-Tokyo Tech) is acknowledged for the scholarship to W. Singhapong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angkhana Jaroenworaluck.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhapong, W., Jaroenworaluck, A., Pansri, R. et al. Mullite membrane coatings: antibacterial activities of nanosized TiO2 and Cu-grafted TiO2 in the presence of visible light illumination. Appl. Phys. A 125, 244 (2019). https://doi.org/10.1007/s00339-019-2526-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2526-8

Navigation