Skip to main content
Log in

Molecular dynamics simulation of dislocation evolution and surface mechanical properties on polycrystalline copper

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

During the nanofabrication process of polycrystalline materials, the interactions of dislocations in material determine the evolution of subsurface defects. In this paper, the molecular dynamics simulation models of nanocutting polycrystalline copper, which is used to study the relationship between the crystal structure and the cutting force during the cutting process, were established, and the transformation process between grain boundaries and dislocations was studied to get the effects of grain boundary on dislocation slip and stress conduction. The results show that there are obvious rules between cutting force and cutting process and grain boundaries can prevent dislocation slip and shielding stress conduction. The influence of different cutting parameters on the evolution of subsurface defects of workpiece was further analyzed. Finally, the nanoindentation simulations and experiments were carried out to study the influence of cutting parameters on surface mechanical properties of workpiece. It is found that to some extent, the surface hardening effect of the workpiece is remarkable with the cutting depth increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. C.S. Pande, K.P. Cooper, Nanomechanics of Hall–Petch relationship in nanocrystalline materials[J]. Prog. Mater Sci. 54(6), 689–706 (2009)

    Article  Google Scholar 

  2. T. Chookajorn, C.A. Schuh, Design of stable nanocrystalline alloys[J]. Science 337(6097), 951 (2012)

    Article  ADS  Google Scholar 

  3. P.R. Cantwell, M. Tang, J.D. Shen et al., Grain boundary complexions[J]. Acta Mater. 62(1), 1–48 (2014)

    Article  Google Scholar 

  4. R.A. Andrievskii, Thermal stability of nanomaterials[J]. J. Mater. Sci. 49(4), 1449–1460 (2014)

    Article  ADS  Google Scholar 

  5. I.J. Beyerlein, M.J. Demkowicz, A. Misra, et al., Defect–interface interactions[J]. Prog. Mater Sci. 74, 125–210 (2015)

    Article  Google Scholar 

  6. R. Barretta, M.D.S. Francesco, A nonlocal model for carbon nanotubes under axial loads[J]. Adv. Mater. Sci. Eng. 2013, 1–6 (2013)

    Article  Google Scholar 

  7. R. Barretta, M. Čanađija, F.M. Sciarra et al. A higher-order Eringen model for Bernoulli–Euler nanobeams[J]. Arch. Appl. Mech. 86, 483 (2016)

    Article  ADS  Google Scholar 

  8. R. Barretta, M. Čanađija, R. Luciano, et al., Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams[J]. Int. J. Eng. Sci. 126, 53–67 (2018)

    Article  MathSciNet  Google Scholar 

  9. M. Čanađija, R. Barretta, M.D.S. Francesco, A gradient elasticity model of Bernoulli–Euler nanobeams in non-isothermal environments[J]. Eur. J. Mech. A Solids 2015, S0997753815001291 (2015)

    Google Scholar 

  10. V. Yamakov, D. Wolf, S.R. Phillpot, et al., Deformation twinning in nanocrystalline Al by molecular-dynamics simulation[J]. Acta Mater. 50(20), 5005–5020 (2002)

    Article  Google Scholar 

  11. V. Yamakov, D. Wolf, S.R. Phillpot, et al., Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation[J]. Nat. Mater. 1(1), 45–49 (2002)

    Article  ADS  Google Scholar 

  12. T. Zhu, H. Gao, Plastic deformation mechanism in nanotwinned metals: an insight from molecular dynamics and mechanistic modeling[J]. Scripta Mater. 66(11), 843–848 (2012)

    Article  Google Scholar 

  13. A. Moitra, Grain size effect on microstructural properties of 3D nanocrystalline magnesium under tensile deformation[J]. Comput. Mater. Sci. 79(Complete), 247–251 (2013)

    Article  Google Scholar 

  14. Z.S. You, X.Y. Li, L.J. Gui et al., Plastic anisotropy and associated deformation mechanisms in nanotwinned metals[J]. Acta Mater. 61(1), 217–227 (2013)

    Article  Google Scholar 

  15. Y. Zhao, X. Wei, Y. Zhang et al., Crystallization of amorphous materials and deformation mechanism of nanocrystalline materials under cutting loads: a molecular dynamics simulation approach[J]. J. Non-Cryst. Solids 439, 21–29 (2016)

    Article  ADS  Google Scholar 

  16. Influence of cutting parameters on the depth of, subsurface deformed layer in nano-cutting process of single crystal copper[J]. Nanoscale Res. Lett. 10(1), 396 (2015)

  17. T. Kadoyoshi, H. Kaburaki, F. Shimizu et al., Molecular dynamics study on the formation of stacking fault tetrahedra and unfaulting of Frank loops in FCC metals[J]. Acta Mater. 55(9), 3073–3080 (2007)

    Article  Google Scholar 

  18. R.G. Hoagland, Molecular dynamics studies of the interaction of /6 <112> Shockley dislocations with stacking fault tetrahedra in copper. Part I: intersection of SFT by an isolated Shockley[J]. Philos. Mag. 89(7), 623–640 (2009)

    Article  ADS  Google Scholar 

  19. X. Zhao, C. Lu, A.K. Tieu et al., Deformation twinning and dislocation processes in nanotwinned copper by molecular dynamics simulations[J]. Comput. Mater. Sci. 142, 59–71 (2018)

    Article  Google Scholar 

  20. J. Li, J. Guo, H. Luo et al., Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations[J]. Appl. Surf. Sci. 364(3), 190–200 (2016)

    ADS  Google Scholar 

  21. J. Li, B. Liu, H. Luo et al., A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates[J]. Comput. Mater. Sci. 118, 66–76 (2016)

    Article  ADS  Google Scholar 

  22. Y.B. Guo, T. Xu, M. Li, Hierarchical dislocation nucleation controlled by internal stress in nanocrystalline copper[J]. Appl. Phys. Lett. 102(24), 241910–241910 (2013)

    Article  ADS  Google Scholar 

  23. Y.B. Guo, T. Xu, M. Li, Generalized type III internal stress from interfaces, triple junctions and other microstructural components in nanocrystalline materials[J]. Acta Mater. 61(13), 4974–4983 (2013)

    Article  Google Scholar 

  24. Liu. Research on Molecular Dynamics Simulation of Polycrystalline Materials[D]. Harbin Institute of Technology, Harbin (2009)

    Google Scholar 

  25. F. Liu, Y.C. Liang, Q.S. Bai, Y.B. Guo, Molecular dynamics simulation of nanometric cutting of polycrystalline copper[J]. Tool Eng. 44(2), 31–34 (2010)

    Google Scholar 

  26. S. Goel, A. Kovalchenko, A. Stukowski et al., Influence of microstructure on the cutting behaviour of silicon[J]. Acta Mater. 105, 464–478 (2016)

    Article  Google Scholar 

  27. J. Shi, Y. Wang, X. Yang, Nano-scale machining of polycrystalline coppers—effects of grain size and machining parameters[J]. Nanoscale Res. Lett. 8(1), 1–18 (2013)

    Article  ADS  Google Scholar 

  28. C. Ji, J. Shi, Y. Wang et al., Tool/chip interfacial stress distributions in atomistic machining of polycrystalline coppers[C]. ASME 2014 International Manufacturing Science and Engineering Conference Collocated with the Jsme 2014 International Conference on Materials and Processing and the, North American Manufacturing Research Conference. V001T03A019 (2014)

  29. S.Z. Chavoshi, S. Goel, X. Luo, Molecular dynamics simulation investigation on the plastic flow behaviour of silicon during nanometric cutting[J]. Modell. Simul. Mater. Sci. Eng. 24(1), 015002 (2016)

    Article  ADS  Google Scholar 

  30. J. Li, J. Guo, H. Luo et al., Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations[J]. Appl. Surf. Sci. 364(3), 190–200 (2015)

    ADS  Google Scholar 

  31. H.T. Liu, X.F. Zhu, Y.Z. Sun et al., Evolution of stacking fault tetrahedral and work hardening effect in copper single crystals[J]. Appl. Surf. Sci. 422, 413–419 (2017)

    Article  ADS  Google Scholar 

  32. Q. Liu, L. Deng, X. Wang et al., Formation of stacking fault tetrahedron in single-crystal Cu during nanoindentation investigated by molecular dynamics[J]. Comput. Mater. Sci. 131, 44–47 (2017)

    Article  Google Scholar 

  33. S. Mojumder, T. Rakib, D. Datta, Hardening mechanism of polycrystalline Al–Cu alloy nanowire through tensile loading[J]. 2017

  34. M. Chamani, G.H. Farrahi, M.R. Movahhedy, Molecular dynamics simulation of nanoindentation of nanocrystalline Al/Ni multilayers[J]. Comput. Mater. Sci. 112, 175–184 (2016)

    Article  Google Scholar 

  35. P.Z. Zhu, C. Qiu, F.Z. Fang et al., Molecular dynamics simulations of nanometric cutting mechanisms of amorphous alloy[J]. Appl. Surf. Sci. 317, 432–442 (2014)

    Article  ADS  Google Scholar 

  36. T. Xu, M. Li, Topological and statistical properties of a constrained Voronoi tessellation[J]. Philos. Mag. 89(4), 349–374 (2009)

    Article  ADS  Google Scholar 

  37. S. Plimpton, J. Comp. Phys. 117, 1–19 (1995). http://lammps.sandia.gov/

  38. M. Stukowski, Simul. Mater. Sci. Eng. 18, 015012 (2009)

    Article  ADS  Google Scholar 

  39. S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B Cond. Matt. 33, 7983 (1986)

    Article  ADS  Google Scholar 

  40. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. J. Mater. Res. 7(06), 1564–1583 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant no. 51475108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazhou Sun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Hao, M., Tao, M. et al. Molecular dynamics simulation of dislocation evolution and surface mechanical properties on polycrystalline copper. Appl. Phys. A 125, 214 (2019). https://doi.org/10.1007/s00339-019-2508-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2508-x

Navigation