Skip to main content
Log in

Boron film laser deposition by ultrashort pulses for use as neutron converter material

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study investigated the production of boron films by femtosecond pulsed laser deposition (PLD) to be used as converters on bulk semiconductor neutron detectors. The ablation threshold of metallic boron was determined and the film growth was studied as a function of deposition time (5–90 min) and laser pulse energy (35–530 μJ). The films were characterized by scanning electron microscopy (SEM), revealing a flaky morphology, optical profilometry, which determined the films thicknesses (from 80 nm up to 4 μm), Ion Beam Analysis (IBA) that assessed their elemental composition and X-ray diffraction (XRD), which revealed an amorphous structure. In addition, a thermal load study was performed to evaluate the heat flux onto the substrate during deposition process. Stable boron films obtained show that the femtosecond PLD process is reliable and reproducible for the fabrication of thick boron coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study, but are available from the corresponding author on reasonable request.

References

  1. C.C. Klepper, R.C. Hazelton, E.J. Yadlowsky, E.P. Carlson, M.D. Keitz, J.M. Williams, R.A. Zuhr, D.B. Poker, J. Vac. Sci. Technol. A Vac. Surf. Film 20, 725 (2002)

    Article  ADS  Google Scholar 

  2. C.C. Klepper, J.M. Williams, J.J. Truhan, J. Qu, L. Riester, R.C. Hazelton, J.J. Moschella, P.J. Blau, J.P. Anderson, O.O. Popoola, M.D. Keitz, Thin Solid Films 516, 3070 (2008)

    Article  ADS  Google Scholar 

  3. M. Vidal-Dasilva, M. Fernández-Perea, J.A. Méndez, J.A. Aznárez, J.I. Larruquert, Appl. Opt. 47, 2926 (2008)

    Article  ADS  Google Scholar 

  4. S. Roszeitis, B. Feng, H.P. Martin, A. Michaelis, J. Eur. Ceram. Soc. 34, 327 (2014)

    Article  Google Scholar 

  5. J.E. Martin, Physics for Radiation Protection, Third Edition (2013)

  6. P. Costa, M.P. Raele, R.E. Samad, N.D. Vieira, N.G.P. Machado, F.A. Genezini, in High-Power Laser Mater Process Appl Diagnostics, Syst VII, ed. by S. Kaierle, S.W. Heinemann (SPIE, Bellingham, 2018), p. 18

    Google Scholar 

  7. Z.F. Song, S.Z. Ye, Z.Y. Chen, L. Song, J. Shen, Appl. Radiat. Isot. 69, 443 (2011)

    Article  Google Scholar 

  8. D.S. McGregor, R.T. Klann, H.K. Gersch, J.D. Sanders, IEEE Nucl. Sci. Symp. Med. Imaging Conf. 4, 2454 (2002)

    Google Scholar 

  9. P. Costa, M.P. Raele, H. Yoriyaz, P. de T.D. Siqueira, G.S. Zahn, F.A. Genezini, in Ina 2015 Int Nucl Atl Conf Brazilian Nucl Progr State Policy a Sustain World (Brazil, 2015)

  10. C. Höglund, J. Birch, K. Andersen, T. Bigault, J.-C. Buffet, J. Correa, P. van Esch, B. Guerard, R. Hall-Wilton, J. Jensen, A. Khaplanov, F. Piscitelli, C. Vettier, W. Vollenberg, L. Hultman, J. Appl. Phys. 111, 104908 (2012)

    Article  ADS  Google Scholar 

  11. Z. Wang, C.L. Morris, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 651, 323–325 (2011)

    Article  ADS  Google Scholar 

  12. K.A. Nelson, N.S. Edwards, N.J. Hinson, C.D. Wayant, D.S. McGregor, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 767, 14 (2014)

    Article  ADS  Google Scholar 

  13. Z. Wang, Y. Shimizu, T. Sasaki, K. Kirihara, K. Kawaguchi, K. Kimura, N. Koshizaki, J. Solid State Chem. 177, 1639 (2004)

    Article  ADS  Google Scholar 

  14. G. Celentano, A. Vannozzi, A. Mancini, A. Santoni, A. Pietropaolo, G. Claps, E. Bemporad, M. Renzelli, F. Murtas, L. Quintieri, Surf. Coat. Technol. 265, 160 (2015)

    Article  Google Scholar 

  15. P. Chaudhari, A. Singh, A. Topkar, R. Dusane, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 779, 33 (2015)

    Article  ADS  Google Scholar 

  16. R.J. Nikolić, A.M. Conway, C.E. Reinhardt, R.T. Graff, T.F. Wang, N. Deo, C.L. Cheung, Appl. Phys. Lett. 93, 133502 (2008)

    Article  ADS  Google Scholar 

  17. T. Shimizu, T. Nakamura, S. Sato, in edited by V.I. Vlad (2007), p. 67850E–67850E–8

  18. N. Acacia, E. Fazio, F. Neri, P.M. Ossi, S. Trusso, N. Santo, Radiat. Eff. Defects Solids 163, 293 (2008)

    Article  ADS  Google Scholar 

  19. P.R. Willmott, J.R. Huber, Rev. Mod. Phys. 72, 315 (2000)

    Article  ADS  Google Scholar 

  20. P. Kelly, R. Arnell, Vacuum 56, 159 (2000)

    Article  ADS  Google Scholar 

  21. D. Benetti, R. Nouar, R. Nechache, H. Pepin, A. Sarkissian, F. Rosei, J.M. MacLeod, Sci. Rep. 7, 2503 (2017)

    Article  ADS  Google Scholar 

  22. E.-S. Lee, J.-K. Park, W.-S. Lee, T.-Y. Seong, Y.-J. Baik, Methods Mater. Int. 19, 1323 (2013)

    Article  Google Scholar 

  23. S.I. Anisimov, D. Bäuerle, B.S. Luk’yanchuk, Phys. Rev. B 48, 12076 (1993)

    Article  ADS  Google Scholar 

  24. F. Kokai, M. Taniwaki, K. Takahashi, A. Goto, M. Ishihara, K. Yamamoto, Y. Koga, Diam. Relat. Mater. 10, 1412 (2001)

    Article  ADS  Google Scholar 

  25. Z. Wang, Y. Shimizu, T. Sasaki, K. Kawaguchi, K. Kimura, N. Koshizaki, Chem. Phys. Lett. 368, 663 (2003)

    Article  ADS  Google Scholar 

  26. D. Dellasega, V. Russo, A. Pezzoli, C. Conti, N. Lecis, E. Besozzi, M. Beghi, C.E. Bottani, M. Passoni, Mater. Des. 134, 35 (2017)

    Article  Google Scholar 

  27. K.-H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, M. Schmidt, Phys. Procedia 12, 230 (2011)

    Article  ADS  Google Scholar 

  28. C.W. Schneider, T. Lippert, in Laser Process Mater Fundam Appl Dev, ed. by P. Schaaf (Springer, Berlin, 2010), pp. 89–112

    Chapter  Google Scholar 

  29. D. von der Linde, K. Sokolowski-Tinten, Appl. Surf. Sci. 154, 1 (2000)

    Article  ADS  Google Scholar 

  30. N.M. Bulgakova, A.V. Bulgakov, V.P. Zhukov, W. Marine, A.Y. Vorobyev, C. Guo, in Proc SPIE 7005, High-Power Laser Ablation VII, edited by C.R. Phipps (2008), p. 70050C

  31. B.N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tünnermann, Appl. Phys. A Mater. Sci. Process. 63, 109 (1996)

    Article  ADS  Google Scholar 

  32. N.M. Bulgakova, I.M. Bourakov, Appl. Surf. Sci. 197–198, 41 (2002)

    Article  ADS  Google Scholar 

  33. P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. Lett. 91, 225502 (2003)

    Article  ADS  Google Scholar 

  34. L.V. Zhigilei, Z. Lin, D.S. Ivanov, J. Phys. Chem. C 113, 11892 (2009)

    Article  Google Scholar 

  35. S.I. Kudryashov, A.A. Ionin, S.V. Makarov, N.N. Mel’nik, L.V. Seleznev, D.V. Sinitsyn, in AIP Conference Proceedings (2012), pp. 244–255

  36. E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Phys. Plasmas 9, 949 (2002)

    Article  ADS  Google Scholar 

  37. A. Sikora, A. Berkesse, O. Bourgeois, J.-L. Garden, C. Guerret-Piécourt, A.-S. Loir, F. Garrelie, C. Donnet, Appl. Phys. A 94, 105 (2009)

    Article  ADS  Google Scholar 

  38. L.M. Machado, R.E. Samad, W. de Rossi, N.D.V. Junior, Opt. Express. 20, 4114 (2012)

    Article  ADS  Google Scholar 

  39. Y. Jee, M.F. Becker, R.M. Walser, J. Opt. Soc. Am. B 5, 648 (1988)

    Article  ADS  Google Scholar 

  40. M.H. Tabacniks, The Laboratory for Material Analysis with Ion Beams LAMFI-USP (World Scientific, Singapore, 1997)

    Google Scholar 

  41. T.F. Silva, C.L. Rodrigues, M. Mayer, M.V. Moro, G.F. Trindade, F.R. Aguirre, N. Added, M.A. Rizzutto, M.H. Tabacniks, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. (2016)

  42. D. Mijatovic, A. Brinkman, H. Hilgenkamp, H. Rogalla, G. Rijnders, D.H.A. Blank, Appl. Phys. A 79, 1243 (2004)

    Article  ADS  Google Scholar 

  43. COMSOL Multiphysics, Manual (2009)

Download references

Acknowledgements

We would like to thank the National Council for Scientific and Technological Development (CNPq): projects 465763/2014-6 and 141628/2015-4; Secretary of Strategic Affairs; Lamfi (Laboratory of material analyses using ion beams—São Paulo University); the support given by the Center for Lasers and Applications’ Multiuser Facility at IPEN-CNEN/SP and the Nuclear Fuel Center Multiuser Facility X-Ray Diffraction Laboratory at IPEN-CNEN/SP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscila Costa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, P., Raele, M.P., Machado, N.G.P. et al. Boron film laser deposition by ultrashort pulses for use as neutron converter material. Appl. Phys. A 125, 99 (2019). https://doi.org/10.1007/s00339-019-2382-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2382-6

Navigation