Skip to main content
Log in

Structural, optical, and photocatalytic properties of Cd1−xS:Lax nanoparticles for optoelectronic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cd1−xS:Lax nanoparticles with varying La and Cd concentrations have been prepared by microemulsion technique in the presence of cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The structural phase for lanthanum-doped cadmium sulfide nanoparticles was investigated using X-ray diffraction revealing a cubic zinc blende structure for x = 0.0–0.06, while the hexagonal structure was obtained for higher La contents. The size of the nanoparticles was observed using field-emission scanning electron (FE-SEM) and transmission electron microscopy (TEM) and nanoparticles were found to exhibit a spherically symmetric shape. Energy-dispersive X-ray spectroscopy (EDX) was performed to analyze the composition of constituent elements. The measurements of photocatalytic hydrogen production indicated that La-doped CdS nanoparticles exhibit high H2-production rate as compared to that by the pure CdS. Diffuse UV–visible and photoluminescence spectra elucidated that bandgap varies inversely with the particle size; bandgap improves as particles size reduces for CdS with low La concentrations (~ 6%), in contrast, for higher La concentrations (8% and 10%) bandgap decays as the particle size improves. We believe that this work enriches the theory on La-doping CdS system and provides comprehensive guidance for the application of effective photocatalytic degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.T. Hsu, S.S. Ro, H.R. Hsu, Y.C. Liu, N-type CdS layer prepared by shallow chemical bath deposition on a 370 × 470 mm2 glass substrate. Thin Solid Films 529, 253–256 (2013)

    Article  ADS  Google Scholar 

  2. H. Yang, C. Huang, X. Li, R. Shi, K. Zhang, Luminescent and photocatalytic properties of cadmium sulfide nanoparticles synthesized via microwave irradiation. Mater. Chem. Phys. 90(1), 155–158 (2005)

    Article  Google Scholar 

  3. P. Elavarthi, A.A. Kumar, G. Murali, D.A. Reddy, K.R. Gunasekhar, Room temperature ferromagnetism and white light emissive CdS:Cr nanoparticles synthesized by chemical co-precipitation method. J. Alloys Compd. 656, 510–517 (2016)

    Article  Google Scholar 

  4. L. Saravanan, R. Jayavel, A. Pandurangan, L.J. Hsin, M.H. Yuan, Influence of Sm doping on the microstructural properties of CdS nanocrystals. Powder Technol. 266, 407–411 (2014)

    Article  Google Scholar 

  5. G. Pandey, S. Dixit, A.K. Shrivastava, Effect of Gd3+ doping and reaction temperature on structural and optical properties of CdS nanoparticles. Mater. Sci. Eng. B 200, 59–66 (2015)

    Article  Google Scholar 

  6. M. Elango, D. Nataraj, K.P. Nazeer, M. Thamilselvan, Synthesis and characterization of nickel doped cadmium sulfide (CdS:Ni2+) nanoparticles. Mater. Res. Bull. 47(6), 1533–1538 (2012)

    Article  Google Scholar 

  7. X. Yang, Z. Yan, L. Jiang, X. Wang, K. Zheng, Y. Wang, Q. Li, J. Wang, Synthesis and photocatalysis of Al doped CdS templated by non-surfactant hypocrellins. Proc. Environ. Sci. 18, 572–578 (2013)

    Article  Google Scholar 

  8. L. Saravanan, R. Jayave, A. Pandurangan, L.J. Hsin, M.H. Yuan, Synthesis, structural and optical properties of Sm3+ and Nd3+ doped cadmium sulfide nanocrystals. Mater. Res. Bull. 52, 128–133 (2014)

    Article  Google Scholar 

  9. S. Chandramohan, A. Kanjilal, J.K. Tripathi, S.N. Sarangi, R. Sathyamoorthy, T. Som, Structural and optical properties of Mn-doped CdS thin films prepared by ion implantation. J. Appl. Phys. 105(12), 123507 (2009)

    Article  ADS  Google Scholar 

  10. H. Jun, L. Ming, D.H. Kim, J.C. Lee, D.J. Lee, F.D. Jun, T.W. Kang, Magnetic properties and magnetoresistance of CdMnS:Au based structures prepared by co-evaporation. Chin. Phys. Lett. 27(7), 078501 (2010)

    Article  ADS  Google Scholar 

  11. K.W. Liu, Magnetic properties and tunneling magnetoresistance effect in Fe–CdFeS granular films. Appl. Phys. Lett. 90(9), 092507 (2007)

    Article  ADS  Google Scholar 

  12. P. Sudhagar, R. Sathyamoorthy, S. Chandramohan, S. Senthilarasu, S.H. Lee, Synthesis of Cd1–xMnxS nanoclusters by surfactant-assisted method: structural, optical and magnetic properties. Mater. Lett. 62(16), 2430–2433 (2008)

    Article  Google Scholar 

  13. T. Zhai, Z. Gu, H. Zhong, Y. Dong, Y. Ma, H. Fu, Y. Li, J. Yao, Design and fabrication of rocketlike tetrapodal CdS nanorods by seed-epitaxial metal—organic chemical vapor deposition. Cryst. Growth Des. 7(3), 488–491 (2007)

    Article  Google Scholar 

  14. W. Zhou, Y. Peng, Y. Yin, Y. Zhou, Y. Zhang, D. Tang, Broad spectral response photodetector based on individual tin-doped CdS nanowire. AIP Adv. 4(12), 123005 (2014)

    Article  ADS  Google Scholar 

  15. J.O. Joswig, M. Springborg, G. Seifert, Structural and electronic properties of cadmium sulfide clusters. J. Phys. Chem. B 104(12), 2617–2622 (2000)

    Article  Google Scholar 

  16. C.E. Bunker, B.A. Harruff, P. Pathak, A. Payzant, L.F. Allard, Y.P. Sun, Formation of cadmium sulfide nanoparticles in reverse micelles: extreme sensitivity to preparation procedure. Langmuir 20(13), 5642–5644 (2004)

    Article  Google Scholar 

  17. A.S. Vorokh, A.A. Rempel, Atomic structure of cadmium sulfide nanoparticles. Phys. Solid State 49(1), 148–153 (2007)

    Article  ADS  Google Scholar 

  18. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978 (1939)

    Article  ADS  Google Scholar 

  19. K.C. Wilson, M.B. Ahmed, Surface modification of cadmium sulfide thin film honey comb nanostructures: effect of in situ tin doping using chemical bath deposition. Appl. Surf. Sci. 361, 277–282 (2016)

    Article  ADS  Google Scholar 

  20. V.N. Astratov, V.N. Bogomolov, A.A. Kaplyanskii, A.V. Prokofiev, L.A. Samoilovich, S.M. Samoilovich, Y.A. Vlasov, Optical spectroscopy of opal matrices with CdS embedded in its pores: quantum confinement and photonic band gap effects. Il Nuovo Cimento D 17(11–12), 1349–1354 (1995)

    Article  ADS  Google Scholar 

  21. H. Abrams, Grain size measurement by the intercept method. Metallography 4(1), 59–78 (1971)

    Article  Google Scholar 

  22. B.S. Rao, B.R. Kumar, V.R. Reddy, T.S. RAO, Preparation and characterization of CdS nanoparticles by chemical co-precipitation technique. Chalcogenide Lett. 8(3), 177–185 (2011)

    Google Scholar 

  23. K.P. Priyanka, V.R. Revathy, P. Rosmin, B. Thrivedu, K.M. Elsa, J. Nimmymol, K.M. Balakrishna, T. Varghese, Influence of La doping on structural and optical properties of TiO2 nanocrystals. Mater. Charact. 113, 144–151 (2016)

    Article  Google Scholar 

  24. M. Elango, K. Gopalakrishnan, S. Vairam, M. Thamilselvan, Structural, optical and magnetic studies on non-aqueous synthesized CdS:Mn nanomaterials. J. Alloys Compd. 538, 48–55 (2012)

    Article  Google Scholar 

  25. J.H. Nobbs, Kubelka Munk theory and the prediction of reflectance. Rev. Prog. Color. Relat. Top. 15(1), 66–75 (1985)

    Article  Google Scholar 

  26. B.S. Rao, V.R. Reddy, B.R. Kumar, T.S. Rao, Synthesis and characterization of nickel doped CdS nanoparticles. Int. J. Nanosci. 11(03), 1240006 (2012)

    Article  Google Scholar 

  27. B.G. Potter, J.H. Simmons, Quantum size effects in optical properties of CdS-glass composites. Phys. Rev. B Condens. Matter 37(18), 10838–10845 (1988)

    Article  ADS  Google Scholar 

  28. X. Wang, D. Li, Y. Guo, X. Wang, Y. Dua, R. Sun, Preparation of lanthanide doped CdS, ZnS quantum dots in natural polysaccharide template and their optical properties. Opt. Mater. 34(4), 646–651 (2012)

    Article  ADS  Google Scholar 

  29. A.V. Isarov, J. Chrysochoos, Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles: surface modification with copper (II) ions. Langmuir 13(12), 3142–3149 (1997)

    Article  Google Scholar 

  30. B.S. Rao, B.R. Kumar, V.R. Reddy, T.S. Rao, G.V. Chalapathi, Influence on optical properties of nickel doped cadmium sulfide. Chalcogenide Lett. 8, 39–44 (2011)

    Google Scholar 

  31. V.H.-T. Thi, B.-K. Lee, Effective photocatalytic degradation of paracetamol using La-doped ZnO photocatalyst under visible light irradiation. Mater. Res. Bull. 96, 171–182 (2017)

    Article  Google Scholar 

  32. Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 133(28), 10878–10888 (2011)

    Article  Google Scholar 

  33. N. Vinothkumar, M. De, Enhanced photocatalytic hydrogen production from water–methanol mixture using cerium and nonmetals (B/C/N/S) co-doped titanium dioxide. Mater. Renew. Sustain. Energy 3, 25 (2014)

    Article  Google Scholar 

  34. V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 126, 4943–4950 (2004)

    Article  Google Scholar 

  35. C.-H. Liao, C.-W. Huang, J. Wu, Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts 2, 490–516 (2012)

    Article  Google Scholar 

  36. L. Jing, S. Xiaojun, X. Baifu, W. Baiqi, C. Wimin, F. Hongganga, The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. J. Solid State Chem. 177, 3375–3382 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Murtaza or Murtaza Saleem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murtaza, G., Osama, S.M.A., Saleem, M. et al. Structural, optical, and photocatalytic properties of Cd1−xS:Lax nanoparticles for optoelectronic applications. Appl. Phys. A 124, 778 (2018). https://doi.org/10.1007/s00339-018-2199-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2199-8

Navigation