Skip to main content

Advertisement

Log in

Titania/reduced graphene oxide composite nanofibers for the direct extraction of photosynthetic electrons from microalgae for biophotovoltaic cell applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Titanium oxide (TiO2)/reduced graphene oxide (rGO) composite nanofibers were synthesized via an electrospinning technique and its potential electrochemical activity constructed its realization as an efficient anode catalyst in biophotovoltaic cells (BPV) with Chlorella vulgaris. The uniform adherence of GO sheets over the hydrolyzed Ti4+ ions, followed by its simultaneous reduction and crystallization, yielded the TiO2/rGO composite nanofibers. The strong interconnection among the nanofibers and the intimate contact between rGO and TiO2 in TiO2/rGO composite improved the efficient electron transportation paths, facilitating the higher oxidation and continuous and stable currents as substantiated, respectively, from the cyclic voltammetry and chronoamperometry studies. By coupling the continuous electron conduction paths, proficient cell interaction, and elevated structural and chemical stabilities, TiO2/rGO demonstrated the BPV power density of 34.66 ± 1.3 mW m−2 with excellent durability, outperforming the BPV performances of previous reports. Thus the fundamental understanding achieved on the influences of nanocatalytic system in green energy generation opens up the new horizon of anticipation towards the development of sustainable and high-performance BPVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.W. Bradley, P. Bombelli, S.J.L. Rowden, C.J. Howe, Biochem. Soc. Trans. 40, 1302–1307 (2012)

    Article  Google Scholar 

  2. G.S.A. Nava, V.H.C. Flores, D.L.C. Chavez, R.D. Chavez, N.J. Scarlat, J.F. Dallemand, R. Parra, Renew. Sustain. Energy Rev. 32, 140–153 (2014)

    Article  Google Scholar 

  3. M. Oey, A.L. Sawyer, I.L. Ross, B. Hankamer, Plant Biotechnol. J. 14, 1487–1499 (2016)

    Article  Google Scholar 

  4. G. Tailong, L. Zhiqiang, C. Minghua, Proc. Eng. 29, 64–68 (2012)

    Article  Google Scholar 

  5. A.M. Hermann, Sol. Energy Mater. Sol. Cells 55, 75–81 (1998)

    Article  Google Scholar 

  6. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Nat. Energy 2, 1–8 (2017)

    Article  Google Scholar 

  7. H. Okamoto, Y. Nitta, T. Yamaguchi, Y. Hamakawa, Sol. Energy Mater. 2, 313–325 (1980)

    Article  ADS  Google Scholar 

  8. A.J. McCormick, P. Bombelli, A.M. Scott, A.J. Philips, A.G. Smith, A.C. Fisher, C.J. Howe, Energy Environ. Sci. 4, 4699–4709 (2011)

    Article  Google Scholar 

  9. M. Shahparnia, M. Packirisamy, P. Juneau, V. Zazubovich, Technology 3, 119–126 (2015)

    Article  Google Scholar 

  10. B.D. Caprariis, P.D. Filippis, A.D. Battista, L.D. Palma, M. Scarsella, Chem. Eng. Trans. 38, 523–528 (2014)

    Google Scholar 

  11. F.L. Ng, M.M. Jaafar, S.M. Phang, Z. Chan, N.A. Salleh, S.Z. Azmi, K. Yunus, A.C. Fisher, V. Periasamy, Sci. Rep. 4, 1–7 (2014)

    Google Scholar 

  12. N. Sekar, Y. Umasankar, R.P. Ramasamy, Phys. Chem. Chem. Phys. 16, 7862–7871 (2014)

    Article  Google Scholar 

  13. J.O. Calkins, Y. Umasankar, H.O. Neill, R.P. Ramasamy, Energy Environ. Sci. 6, 1891–1900 (2013)

    Article  Google Scholar 

  14. Y. Zou, J. Pisciotta, R.B. Billmyre, I.V. Baskakov, Biotechnol. Bioeng. 104, 939–946 (2009)

    Article  Google Scholar 

  15. G.G. Kumar, C.J. Kirubaharan, S. Udhayakumar, C. Karthikeyan, K.S. Nahm, Ind. Eng. Chem. Res. 53, 16883–16893 (2014)

    Article  Google Scholar 

  16. G.G. Kumar, C.J. Kirubaharan, S. Udhayakumar, K. Ramachandran, C. Karthikeyan, R. Renganathan, K.S. Nahm, ACS Sustain. Chem. Eng. 2, 2283–2290 (2014)

    Article  Google Scholar 

  17. C.H. Liao, C.W. Huang, J.C.S. Wu, Catalysts 2, 490–516 (2012)

    Article  Google Scholar 

  18. A.S. Adeleye, A.A. Keller, Environ. Sci. Technol. 50, 12258–12265 (2016)

    Article  ADS  Google Scholar 

  19. R. Ramachandran, K. Ramachandran, G.G. Philip, R. Ramachandran, H.A. Therese, G.G. Kumar, RSC Adv. 5, 76538–76547 (2015)

    Article  Google Scholar 

  20. S.E. Oh, B.E. Logan, Appl. Microbiol. Biotechnol. 70, 162–169 (2006)

    Article  Google Scholar 

  21. S.M. Phang, W.L. Chu, University of Malaya Algae Culture Collection, Catalogue of strains. Institute of postgraduate studies and Research Bibliographies and Research Guides: BPP. Bil 2 (1999)

  22. X. Zhang, P.S. Kumar, V. Aravindan, H.H. Liu, J. Sundaramurthy, S.G. Mhaisalkar, H.M. Duong, S. Ramakrishna, S. Madhavi, J. Phys. Chem. C 116, 14780–14788 (2012)

    Article  Google Scholar 

  23. H.R. Pant, S.P. Adhikari, B. Pant, M.K. Joshi, H.J. Kim, C.H. Park, C.S. Kim, J. Colloid Interface Sci. 5, 457174–457179 (2015)

    Google Scholar 

  24. Y. Dai, Y. Jing, J. Zeng, Q. Qi, C. Wang, D. Goldfeld, C. Xu, Y. Zheng, Y. Sun, J. Mater. Chem. 21, 18174–18179 (2011)

    Article  Google Scholar 

  25. C.H. Kim, B.H. Kim, K.S. Yang, Carbon 50, 2472–2481 (2012)

    Article  Google Scholar 

  26. P.K. Dubey, P. Tripathi, R.S. Tiwari, A.S.K. Sinha, O.N. Srivastava, Int. J. Hydrog. Energy 39, 16282–16292 (2014)

    Article  Google Scholar 

  27. T. Lavanya, K. Satheesh, M. Dutta, N.V. Jaya, N. Fukata, J. Alloys Compd. 615, 643–650 (2014)

    Article  Google Scholar 

  28. D. Xu, P. Wang, B. Shen, Dig. J. Nanomater. Biostruct. 11, 15–22 (2016)

    Google Scholar 

  29. G.S.H. Thien, F.S. Omar, N.I.S.A. Blya, W.S. Chiu, H.N. Lim, R. Yousefi, F.J. Sheini, N.M. Huang, Int. J. Photoenergy 2014, 1–9 (2014)

    Article  Google Scholar 

  30. Y. Dai, Y. Sun, J. Yao, D. Ling, Y. Wang, H. Long, X. Wang, B. Lin, T.H. Zeng, Y. Sun, J. Mater. Chem. A 2, 1060–1067 (2014)

    Article  Google Scholar 

  31. M. Angelaalincy, N. Senthilkumar, R. Karpagam, G.G. Kumar, B. Ashokkumar, P. Varalakshmi, ACS Omega 2, 3754–3765 (2017)

    Article  Google Scholar 

  32. K. Hasan, E. Cevik, E. Sperling, M.A. Packer, D. Leech, L. Gorton, Adv. Energy Mater. 5, 1–11 (2015)

    Article  Google Scholar 

  33. A. Driver, P. Bombelli, Catalyst 4, 13–15 (2011)

    Google Scholar 

  34. F.L. Ng, S.M. Phang, V. Periasamy, K. Yunus, A.C. Fisher, Adv. Mater. Res. 895, 116–121 (2014)

    Article  Google Scholar 

  35. F.L. Ng, S.M. Phang, V. Periasamy, K. Yunus, A.C. Fisher, PLoS One 9, 116–121 (2014)

    Google Scholar 

  36. T. Wenzel, D. Hartter, P. Bombelli, C.J. Howe, U. Steiner, Nat. Commun. 9, 1–9 (2018)

    Article  Google Scholar 

  37. L.B. Nohara, G.P. Filho, E.L. Nohara, M.U. Kleinke, M.C. Rezen, Mater. Res. 8, 281–286 (2005)

    Article  Google Scholar 

  38. C.C. Luhrs, C.D. Daskam, E. Gonzalez, J. Phillips, Materials 7, 3699–3714 (2014)

    Article  ADS  Google Scholar 

  39. N.K. Kang, B. Lee, G.G. Choi, M. Moon, M.S. Park, J. Lim, J.W. Yang, Korean J. Chem. Eng. 31, 861–867 (2014)

    Article  Google Scholar 

  40. K.C. Lemmer, A.C. Dohnalkova, D.R. Noguera, T.J. Donohue, J. Bacteriol. 97, 1649–1658 (2015)

    Article  Google Scholar 

  41. I.H. Park, P. Kim, G.G. Kumar, K.S. Nahm, Appl. Biochem. Biotechnol. 179, 1170–1183 (2016)

    Article  Google Scholar 

  42. C.C. Fu, T.C. Hung, W.T. Wu, T.C. Wen, C.H. Su, Biochem. Eng. J. 52, 175–180 (2010)

    Article  Google Scholar 

  43. V. Vello, S.M. Phang, W.L. Chu, N.A. Majid, P.E. Lim, S.K. Loh, J. Appl. Phycol. 26, 1399–1413 (2014)

    Article  Google Scholar 

  44. L.L. Tan, W.J. Ong, S.P. Chai, A.R. Mohamed, Nanoscale Res. Lett. 8, 465 (2013)

    Article  ADS  Google Scholar 

  45. V.M. Harik, Toxicol. Lett. 273, 69–85 (2017)

    Article  Google Scholar 

  46. O. Fokina, J. Eipper, L. Winandy, S. Kerzenmacher, R. Fischer, Bioresour. Technol. 175, 445–453 (2015)

    Article  Google Scholar 

  47. A.E. Franks, K.P. Nevin, Energies 3, 899–919 (2010)

    Article  Google Scholar 

  48. C.S. Butler, R. Nerenberg, Appl. Microbiol. Biotechnol. 86, 1399–1408 (2010)

    Article  Google Scholar 

  49. S. Oh, B. Min, B.E. Logan, Environ. Sci. Technol. 38, 4900–4904 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Science and Engineering Research Board (SERB), New Delhi, India, Major Project Grant No.: EMR/2015/000912. Dr. Phang was supported by HICoE MOHE:IOES-2014F Grant and Newton Prize 2017 (IF008-2018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Soo Lee, Vengadesh Periasamy or G. Gnana kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthilkumar, N., Sheet, S., Sathishkumar, Y. et al. Titania/reduced graphene oxide composite nanofibers for the direct extraction of photosynthetic electrons from microalgae for biophotovoltaic cell applications. Appl. Phys. A 124, 769 (2018). https://doi.org/10.1007/s00339-018-2159-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2159-3

Navigation