Skip to main content
Log in

Design of a wideband transmissive linear-to-circular polarization converter based on a metasurface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A wideband transmissive linear-to-circular polarization converter based on an anisotropic metasurface is proposed, which consists of three layers of conductive pattern layers separated by two dielectric layers, each conductive pattern layer consists of a square array of elliptical loop apertures. For the long axis of each loop aperture is tilted 45° from the vertical direction, and it is an orthogonal anisotropic structure with a pair of mutually perpendicular symmetric axes u and v along ± 45° directions with respect to y axis direction. Numerical simulation results show that the polarization converter can realize linear-to-circular polarization conversion at x and y polarized incidences in the frequency range from 10.73 to 16.13 GHz with a relative bandwidth of 40.2%. A detailed analysis for the polarization conversion was presented, and an effective formula was deduced, which can be used to calculate the cross- and co-polarization transmission coefficients at x and y polarized incidences according to the two transmission coefficients at u and v polarized incidences. Finally, one experiment was carried out, and a good agreement was observed between measured and simulated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I.E.E.E. Kajiwara, Trans. Veh. Technol. 44, 487–493 (1995)

    Article  Google Scholar 

  2. Y.R. Padooru, A.B. Yakovlev, P.Y. Chen, A. Alù, J. Appl. Phys. 112, 104902 (2012)

    Article  ADS  Google Scholar 

  3. P.Y. Chen, A. Alù, Phys. Rev. B 84, 205110 (2011)

    Article  ADS  Google Scholar 

  4. J.C. Soric, P.Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, A. Alù, New J. Phys. 15, 33037 (2013)

    Article  Google Scholar 

  5. M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, S. Maci, IEEE Trans. Antennas Propag. 60, 4065 (2012)

    Article  ADS  Google Scholar 

  6. X. Wan, W.X. Jiang, H.F. Ma, T.J. Cui, Appl. Phys. Lett. 104, 151601 (2014)

    Article  ADS  Google Scholar 

  7. Pfeiffer, A. Grbic, IEEE Trans. Antennas Propag. 63, 3248 (2015)

    Article  ADS  Google Scholar 

  8. K.Q. Argyropoulos, N. Le, G. Mattiucci, Daguanno, A. Alù, Phys. Rev. B 87, 205112 (2013)

    Article  ADS  Google Scholar 

  9. L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, R. Singh, Appl. Phys. Lett. 106, 031107 (2015)

    Article  ADS  Google Scholar 

  10. J.F. Wang, S.B. Qu, H. Ma, Z. Xu, A.X. Zhang, H. Zhou, Appl. Phys. Lett. 101, 201104 (2012)

    Article  ADS  Google Scholar 

  11. S.L. Sun, Q. He, S.Y. Xiao, Q. Xu, X. Li, L. Zhou, Nat. Mater. 11, 426 (2012)

    Article  ADS  Google Scholar 

  12. H. Chen, J. Wang, H. Ma, J. Appl. Phys. 115, 154504 (2014)

    Article  ADS  Google Scholar 

  13. X. Gao, X. Han, W.P. Cao, IEEE Trans. Antennas Propag. 63, 3522–3530 (2015)

    Article  ADS  Google Scholar 

  14. S. Sui, H. Ma, J. Wang et al., Appl. Phys. Lett. 109, 063908 (2016)

    Article  Google Scholar 

  15. P. Su, Y. Zhao, S. Jia et al., Sci. Rep. 6, 20387 (2016)

    Article  ADS  Google Scholar 

  16. J. Zhao, Y. Cheng, Appl. Phys. B 122, 255 (2016)

    Article  ADS  Google Scholar 

  17. J. Li, P. Yu, H. Cheng et al., Adv. Opt. Mater. 4, 91 (2016)

    Article  Google Scholar 

  18. H. Sun, C. Gu, X. Chen et al., J. Appl. Phys. 121, 174902 (2017)

    Article  ADS  Google Scholar 

  19. Y. Fang, Z. Cheng, J. He, Zhao, R. Gong, Optik Int. J. Light Electron Opt. 137, 148–155 (2017)

    Article  Google Scholar 

  20. P. Xu, S.Y. Wang, W. Geyi, J. Appl. Phys. 121, 144502 (2017)

    Article  ADS  Google Scholar 

  21. M.I. Khan, Q. Fraz, F.A. Tahir, J. Appl. Phys. 121, 045103 (2017)

    Article  ADS  Google Scholar 

  22. H. Cheng, S. Chen, P. Yu et al., Appl. Phys. Lett. 103, 223102 (2013)

    Article  ADS  Google Scholar 

  23. J. Zhao, B. Xiao, X. Huang et al., Microw. Opt. Technol. Lett. 57, 978 (2015)

    Article  Google Scholar 

  24. M. Kuwata-Gonokami, N. Saito, Y. Ino et al., Phys. Rev. Lett. 95, 227401 (2005)

    Article  ADS  Google Scholar 

  25. C. Huang, Y. Feng, J. Zhao et al., Phys. Rev. B 85, 195131 (2012)

    Article  ADS  Google Scholar 

  26. X. Huang, D. Yang, S. Yu et al., Appl. Phys. B 117, 633–638 (2014)

    Article  Google Scholar 

  27. Y. Xu, Q. Shi, Z. Zhu et al., Opt. Express 22, 25679 (2014)

    Article  ADS  Google Scholar 

  28. Z. Liu, X. Xiao, Ma et al., Appl. Phys. A 118, 787–791 (2015)

    Article  ADS  Google Scholar 

  29. W. Liu, S. Chen, Z. Li et al., Opt. Lett. 40, 3185 (2015)

    Article  ADS  Google Scholar 

  30. K.K. Xu, Z.Y. Xiao, J.Y. Tang, Phys. E 81, 169–176 (2016)

    Article  Google Scholar 

  31. X. Zhou, Z. Tao, Shen et al., Sci. Rep. 6, 38925 (2016)

    Article  ADS  Google Scholar 

  32. S. Fang, K. Luan, H.F. Ma et al., J. Appl. Phys. 121, 033103 (2017)

    Article  ADS  Google Scholar 

  33. T. Dou, L. Wei, X. Ran et al., IET Microw. Antennas Propag. 11, 171–176 (2017)

    Article  Google Scholar 

  34. Z. Liu, Z. Li, Z. Liu et al., ACS Photonics 4, 2061 (2017)

    Article  Google Scholar 

  35. S.L. Prosvirnin, N.I. Zheludev, Phys. Rev. E 71, 037603 (2005)

    Article  ADS  Google Scholar 

  36. C. Pfeiffer, C. Zhang, V. Ray et al., Phys. Rev. Lett. 113, 023902 (2014)

    Article  ADS  Google Scholar 

  37. M. Euler, V. Fusco, R. Cahill, R. Dickie, Let Microw. Antennas Propag. 58, 2457–2459

  38. S. Yan, G.A.E. Vandenbosch, Appl. Phys. Lett. 102, 103503–103504 (2013)

    Article  ADS  Google Scholar 

  39. L. Zhu, S.W. Cheung, K.L. Chung et al., IEEE Trans. Antennas Propag. 61, 4615–4623 (2013)

    Article  ADS  Google Scholar 

  40. L. Martinez-Lopez, J. Rodriguez-Cuevas, J.I. Martinez-Lopez, A.E. Martynyuk, IEEE Antennas Wirel. Propag. Lett. 13, 153–156 (2014)

    Article  ADS  Google Scholar 

  41. Y. Li, J. Zhang, S. Qu et al., J. Appl. Phys. 117, 044501 (2015)

    Article  ADS  Google Scholar 

  42. Z. Li, W. Liu, H. Cheng et al., Sci. Rep. 5, 18106 (2015)

    Article  ADS  Google Scholar 

  43. Y. Tamayama, K. Yasui, T. Nakanishi et al., Appl. Phys. Lett. 105, 063908 (2014)

    Article  Google Scholar 

  44. J.D. Baena et al., IEEE Trans. Antennas Propag. 65, 4124–4133 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  45. Y. Liu, Y. Luo, C. Liu, K. Song, X. Zhao, Appl. Phys. A 123, 571 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 61471387), Key Research and Development Plan Project of Shaanxi Provincial Science & Technology Department (Program no. 2018ZDXM-NY-014), the research center for internet of things and big data technology of Xijing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoqin Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, B., Guo, J., Ma, Y. et al. Design of a wideband transmissive linear-to-circular polarization converter based on a metasurface. Appl. Phys. A 124, 715 (2018). https://doi.org/10.1007/s00339-018-2135-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2135-y

Navigation