Skip to main content
Log in

Influence of temperature on structure, morphology, and magnetic property of graphene–MnFe2O4 nanocomposites synthesized by a combined hydrothermal/co-precipitation method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Combination of co-precipitation and hydrothermal methods is a promising route to synthesize various materials. Herein, we synthesized reduced graphene oxide/manganese ferrite (rGO/MnFe2O4) nanocomposites through combining a co-precipitation reaction of Mn2+ and Fe3+ ions in GO solution with subsequent hydrothermal treatment at different temperatures (80, 130, and 180 °C). The resulting rGO/MnFe2O4 nanocomposites were characterized using X-ray diffractometry, Fourier-transform infrared spectroscopy, scanning and transmission electron microscopy, and magnetic measurements at room temperature. The influence of hydrothermal temperature on structural, morphological, magnetic and As(III) adsorption properties of rGO/MnFe2O4 nanocomposites was studied. Increasing hydrothermal temperature leads to better crystallinity, magnetic properties, and As(III) adsorption capacity. At the hydrothermal temperature of 180 °C, the resulting rGO/MnFe2O4 nanocomposites exhibited a crystalline size of 37.2 nm, saturated magnetization of 22.7 emu/g, and As(III) removal efficiency of 83% at neutral pH (pH ≈ 7).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Wang, X. Wu, W. Zhang, S. Huang, One-pot synthesis of MnFe2O4 nanoparticles-decorated reduced graphene oxide for enhanced microwave absorption properties. Mater. Technol. 32, 32–37 (2017)

    Article  Google Scholar 

  2. I. Kotutha, E. Swatsitang, W. Meewassana, S. Maensiri, One-pot hydrothermal synthesis, characterization, and electrochemical properties of rGO/MnFe2O4 nanocomposites. Jpn. J. Appl. Phys. 54, 06FH10 (2015)

    Article  Google Scholar 

  3. S.-F. Zhou, X.-J. Han, H.-L. Fan, J. Huang, Y.-Q. Liu, Enhanced electrochemical performance for sensing Pb (II) based on graphene oxide incorporated mesoporous MnFe2O4 nanocomposites. J. Alloy. Compd. 747, 447–454 (2018)

    Article  Google Scholar 

  4. S. Chella, P. Kollu, E.V.P. Komarala, S. Doshi, M. Saranya, S. Felix, R. Ramachandran, P. Saravanan, V.L. Koneru, V. Venugopal, Solvothermal synthesis of MnFe2O4-graphene composite—investigation of its adsorption and antimicrobial properties. Appl. Surf. Sci. 327, 27–36 (2015)

    Article  ADS  Google Scholar 

  5. H. Tang, P. Gao, A. Xing, S. Tian, Z. Bao, One-pot low-temperature synthesis of a MnFe2O4–graphene composite for lithium ion battery applications. RSC Adv. 4, 28421–28425 (2014)

    Article  Google Scholar 

  6. K. Wu, G. Hu, Y. Cao, Z. Peng, K. Du, Facile and green synthesis of MnFe2O4/reduced graphene oxide nanocomposite as anode materials for Li-ion batteries. Mater. Lett. 161, 178–180 (2015)

    Article  Google Scholar 

  7. Z. Yang, Y. Huang, D. Ji, G. Xiong, H. Luo, Y. Wan, Hydrazine hydrate-induced hydrothermal synthesis of MnFe2O4 nanoparticles dispersed on graphene as high-performance anode material for lithium ion batteries. Ceram. Int. 43, 10905–10912 (2017)

    Article  Google Scholar 

  8. A.-T. Le, C.D. Giang, T.Q. Tuan, V.N. Phan, J. Alonso, J. Devkota, E. Garaio, J. García, R. Martín-Rodríguez, M.L. Fdez-Gubieda, Enhanced magnetic anisotropy and heating efficiency in multi-functional manganese ferrite/graphene oxide nanostructures. Nanotechnology 27, 155707 (2016)

    Article  ADS  Google Scholar 

  9. Y. Yang, H. Shi, Y. Wang, B. Shi, L. Guo, D. Wu, S. Yang, H. Wu, Graphene oxide/manganese ferrite nanohybrids for magnetic resonance imaging, photothermal therapy and drug delivery. J. Biomater. Appl. 30, 810–822 (2016)

    Article  Google Scholar 

  10. A.G. Tabrizi, N. Arsalani, A. Mohammadi, H. Namazi, L.S. Ghadimi, I. Ahadzadeh, Facile synthesis of a MnFe2O4/rGO nanocomposite for an ultra-stable symmetric supercapacitor. New J. Chem. 41, 4974–4984 (2017)

    Article  Google Scholar 

  11. S. Kumar, R.R. Nair, P.B. Pillai, S.N. Gupta, M. Iyengar, A. Sood, Graphene oxide–MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl. Mater. Interfaces 6, 17426–17436 (2014)

    Article  Google Scholar 

  12. S. Zhang, H. Niu, Y. Cai, X. Zhao, Y. Shi, Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J. 158, 599–607 (2010)

    Article  Google Scholar 

  13. S. Bai, X. Shen, X. Zhong, Y. Liu, G. Zhu, X. Xu, K. Chen, One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal. Carbon 50, 2337–2346 (2012)

    Article  Google Scholar 

  14. X. Peng, J. Qu, S. Tian, Y. Ding, X. Hai, B. Jiang, M. Wu, J. Qiu, Green fabrication of magnetic recoverable graphene/MnFe2O4 hybrids for efficient decomposition of methylene blue and the Mn/Fe redox synergetic mechanism. RSC Adv. 6, 104549–104555 (2016)

    Article  Google Scholar 

  15. R. Rafiee, A. Eskandariyun, Comparative study on predicting Young’s modulus of graphene sheets using nano-scale continuum mechanics approach. Phys. E 90, 42–48 (2017)

    Article  Google Scholar 

  16. N.U. Yamaguchi, R. Bergamasco, S. Hamoudi, Magnetic MnFe2O4–graphene hybrid composite for efficient removal of glyphosate from water. Chem. Eng. J. 295, 391–402 (2016)

    Article  Google Scholar 

  17. P.T.L. Huong, N. Tu, H. Lan, N. Van Quy, P.A. Tuan, N.X. Dinh, V.N. Phan, A.-T. Le, Functional manganese ferrite/graphene oxide nanocomposites: effects of graphene oxide on the adsorption mechanisms of organic MB dye and inorganic As (v) ions from aqueous solution. RSC Adv. 8, 12376–12389 (2018)

    Article  Google Scholar 

  18. C. Liu, Z.J. Zhang, Size-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles. Chem. Mater. 13, 2092–2096 (2001)

    Article  Google Scholar 

  19. R. Upadhyay, K. Davies, S. Wells, S. Charles, Preparation and characterization of ultra-fine MnFe2O4 and MnxFe1xFe2O4 spinel systems: I. particles. J. Magn. Magn. Mater 132, 249–257 (1994)

    Article  ADS  Google Scholar 

  20. P.T.L. Huong, V.N. Phan, T.Q. Huy, M.H. Nam, V.D. Lam, A.-T. Le, Application of graphene oxide-MnFe2O4 magnetic nanohybrids as magnetically separable adsorbent for highly efficient removal of arsenic from water. J. Electron. Mater. 45, 2372–2380 (2016)

    Article  ADS  Google Scholar 

  21. T.V. Thu, P.J. Ko, T.V. Nguyen, N.T. Vinh, D.M. Khai, L.T. Lu, Green synthesis of reduced graphene oxide/Fe3O4/Ag ternary nanohybrid and its application as magnetically recoverable catalyst in the reduction of 4-nitrophenol, Appl. Organomet. Chem. 31 (2017)

    Article  Google Scholar 

  22. K.V. Sankar, R.K. Selvan, The preparation of MnFe2O4 decorated flexible graphene wrapped with PANI and its electrochemical performances for hybrid supercapacitors. RSC Adv. 4, 17555–17566 (2014)

    Article  Google Scholar 

  23. T.V. Thu, P.J. Ko, N.H.H. Phuc, A. Sandhu, Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids. J. Nanoparticle Res. 15, 1–13 (2013)

    Article  Google Scholar 

  24. Y. Sang, H. Liu, X. Sun, X. Zhang, H. Qin, Y. Lv, D. Huo, D. Liu, J. Wang, R.I. Boughton, Formation and calcination temperature-dependent sintering activity of YAG precursor synthesized via reverse titration method. J. Alloy. Compd. 509, 2407–2413 (2011)

    Article  Google Scholar 

  25. Y. Sang, Y. Lv, H. Qin, X. Zhang, H. Liu, J. Wang, X. Sun, R.I. Boughton, Chemical composition evolution of YAG co-precipitate determined by pH during aging period and its effect on precursor properties. Ceram. Int. 38, 1635–1641 (2012)

    Article  Google Scholar 

  26. A. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939)

    Article  ADS  Google Scholar 

  27. H. Cui, Y. Liu, W. Ren, Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature sol–gel synthesis of nearly monodispersed iron oxide nanoparticles. Adv. Powder Technol. 24, 93–97 (2013)

    Article  Google Scholar 

  28. Y. Jiang, C. Hu, H. Cheng, C. Li, T. Xu, Y. Zhao, H. Shao, L. Qu, Spontaneous, straightforward fabrication of partially reduced graphene oxide–polypyrrole composite films for versatile actuators. ACS Nano 10, 4735–4741 (2016)

    Article  Google Scholar 

  29. G. Titelman, V. Gelman, S. Bron, R. Khalfin, Y. Cohen, H. Bianco-Peled, Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide. Carbon 43, 641–649 (2005)

    Article  Google Scholar 

  30. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’Homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41 (2008)

    Article  ADS  Google Scholar 

  31. C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J. Phys. Chem. B 104, 1141–1145 (2000)

    Article  Google Scholar 

  32. V. Chandra, J. Park, Y. Chun, J.W. Lee, I.-C. Hwang, K.S. Kim, Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4, 3979–3986 (2010)

    Article  Google Scholar 

  33. Y. Yoon, W.K. Park, T.-M. Hwang, D.H. Yoon, W.S. Yang, J.-W. Kang, Comparative evaluation of magnetite–graphene oxide and magnetite-reduced graphene oxide composite for As (III) and As (V) removal. J. Hazard. Mater. 304, 196–204 (2016)

    Article  Google Scholar 

  34. G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 45, 10454–10462 (2011)

    Article  ADS  Google Scholar 

  35. X. Luo, C. Wang, L. Wang, F. Deng, S. Luo, X. Tu, C. Au, Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As (III) and As (V) from water. Chem. Eng. J. 220, 98–106 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 103.02-2015.100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran V. Thu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thu, T.V., Thao, V.D. Influence of temperature on structure, morphology, and magnetic property of graphene–MnFe2O4 nanocomposites synthesized by a combined hydrothermal/co-precipitation method. Appl. Phys. A 124, 675 (2018). https://doi.org/10.1007/s00339-018-2092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2092-5

Navigation