Skip to main content
Log in

Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Applications of polymer-based nanocomposites continue to rise because of their special properties such as lightweight, low cost, and durability. Among the most important applications is the thermal management of high density electronics which requires effective dissipation of internally generated heat. This paper presents our experimental results on the influence of graphene, multi-walled carbon nanotubes (MWCNTs) and chopped carbon fibers on wear resistance, hardness, impact strength and thermal conductivity of epoxy resin composites. We observed that, within the range of the experimental data (epoxy resin + 1, 3, 5 wt% of graphene or 1, 3, 5 wt% MWCNT or 10, 30, 50 wt% carbon fibers), graphene-enhanced wear resistance of the nanocomposites by 75% compared to 50% and 38% obtained for MWCNT and carbon fiber composite, respectively. The impact resistance of graphene nanocomposite rose by 26% (from 7.3 to 9.2 J/m2) while that of MWCNT nanocomposite was improved by 14% (from 7.3 to 8.2 J/m2). The thermal conductivity increased 3.6-fold for the graphene nanocomposite compared to threefold for MWCNT nanocomposite and a meager 0.63-fold for carbon fiber composite. These enhancements in mechanical and thermal properties are generally linear within the experimental limits. The huge increase in thermal conductivity, especially for the graphene and MWCNT nanocomposites makes the composites readily applicable as high conductive materials for use as heat spreaders and thermal pads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F.A. dos Santos, G.C. Iulianelli, M.I.B. Tavares, Mater. Sci. Appl. 7, 257 (2016)

    Google Scholar 

  2. C. Huang, W. Zhen, Z. Huang, D. Luo, Appl. Phys. A 124, 38 (2018)

    Article  ADS  Google Scholar 

  3. N.K. Mahanta, M.R. Loos, I.M. Zlocozower, A.R. Abramson, J. Mater. Res. 30, 959 (2015)

    Article  ADS  Google Scholar 

  4. A. Li, C. Zhang, Y.F. Zhang, Polymers 9, 437 (2017)

    Article  Google Scholar 

  5. A.K. Geim, S.N. Konstantin, Nat. Mater. 6, 183 (2007)

    Article  Google Scholar 

  6. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    Article  ADS  Google Scholar 

  7. A.A. Balandin, Nat. Mater. 10, 569 (2011)

    Article  ADS  Google Scholar 

  8. D.L. Nika, A.A. Balandin, Rep. Prog. Phys. 80, 036502 (2017)

    Article  ADS  Google Scholar 

  9. J. Wei, R. Atif, T. Vo, F. Inam, J. Nanomater. 16, 374 (2015)

    Google Scholar 

  10. J.D. Renteria, D.L. Nika, A.A. Balandin, J. Appl. Sci. 4, 525 (2014)

    Article  Google Scholar 

  11. P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, A.A. Balandin, J. Power Sources 248, 37 (2014)

    Article  ADS  Google Scholar 

  12. J. Renteria, S. Legedza, R. Salgado, M.P. Balandin, S. Ramirez, M. Saadah, F. Kargar, A.A. Balandin, Mater. Des. 88, 214 (2015)

    Article  Google Scholar 

  13. S. Ramirez, K. Chan, R. Hernandez, E. Recinos, E. Hernandez, R. Salgado, A.G. Khitun, J.E. Garay, A.A. Balandin, Mater. Des. 118, 75 (2017)

    Article  Google Scholar 

  14. M. Saadah, E. Hernandez, A.A. Balandin, Appl. Sci. 7, 589 (2017)

    Article  Google Scholar 

  15. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  16. B. Arash, Q. Wang, V.K. Varadan, Sci. Rep. 4, 6479 (2014)

    Article  ADS  Google Scholar 

  17. R. Gulotty, M. Castellino, P. Jagdale, A. Tagliaferro, A.A. Balandin, ACS Nano 7, 5114 (2013)

    Article  Google Scholar 

  18. J. Wu, Z. Kou, G. Cui, Ind. Lubr. Tribol. 68, 212 (2016)

    Article  Google Scholar 

  19. M. Bhattacharya, Materials 9, 262 (2016)

    Article  ADS  Google Scholar 

  20. X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41, 666 (2012)

    Article  Google Scholar 

  21. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Prog. Polym. Sci. 35, 1350 (2010)

    Article  Google Scholar 

  22. H. Ago, K. Petritsch, M.S. Shaffer, A.H. Windle, R.H. Friend, Adv. Mater. 11, 1281 (1999)

    Article  Google Scholar 

  23. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Prog. Mater Sci. 56, 1178 (2011)

    Article  Google Scholar 

  24. D. Galpaya, M. Wang, M. Liu, N. Motta, E.R. Waclawik, C. Yan, Graphene 1, 30 (2012)

    Article  Google Scholar 

  25. I. Engelberg, J. Kohn, Biomaterials 12, 292 (1991)

    Article  Google Scholar 

  26. R. owicy, “Fraction and wear of materials” (Wiely, New York, 1965)

    Google Scholar 

  27. E.S. Al-Hassani, Eng Tech J, 28, (2010) (1982)

  28. F.A. Saleh, F.A. Abdulla, A.A.J. Mahdi, J. Eng. Dev. 19, 147 (2015)

    Google Scholar 

  29. N.W. Khun, H. Zhang, L.H. Lim, J. Yang, KMUTNB: IJAST 8, 101 (2015)

    Google Scholar 

  30. X. Li, H. Gao, W.A. Scrivens, D. Fei, X. Xu, M.A. Sutton, A.P. Reynolds, M.L. Myrick, Nanotechnology 15, 1416 (2004)

    Article  ADS  Google Scholar 

  31. M. Cho, Mater. Trans. 49, 2801 (2008)

    Article  Google Scholar 

  32. U. Abdullahi, M.A. Maleque, U. Nirmal, Procedia Eng. 68, 736 (2013)

    Article  Google Scholar 

  33. Y. Şahin, P. De Baets, I.O.P. Conf, Ser. Mater. Sci. Eng. 174, 012009 (2017)

    Google Scholar 

  34. J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Carbon 44, 1624 (2006)

    Article  Google Scholar 

  35. N. Norhakim, S.H. Ahmad, C.H. Chia, N.M. Huang, Sains Malays. 43, 603 (2014)

    Google Scholar 

  36. G. Agarwal, A. Patnaik, R.K. Sharma, J. Eng. Sci. Technol. 9, 590 (2014)

    Google Scholar 

  37. J. Wei, T. Vo, F. Inam, RSC Adv. 5, 73510 (2015)

    Article  Google Scholar 

  38. Y. Wang, J. Yu, W. Dai, Y. Song, D. Wang, L. Zeng, N. Jiang, Polym. Compos. 36, 556 (2015)

    Article  Google Scholar 

  39. F.T. Fisher, R.D. Bradshaw, L.C. Brinson, Appl. Phys. Lett. 80, 4647 (2002)

    Article  ADS  Google Scholar 

  40. T.L. Bergman, F.P. Incropera, D.P. DeWitt, A.S. Lavine, Fundamentals of heat and mass transfer, (Wiely, New York, 2011)

    Google Scholar 

  41. E. Piokowska, A. Goleski, Int. Polym. Sci. Tech. 12, 102 (1985)

    Google Scholar 

  42. J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, J.E. Fischer, Appl. Phys. A 74, 339 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa M. Abd-Elnaiem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein, S.I., Abd-Elnaiem, A.M., Asafa, T.B. et al. Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite. Appl. Phys. A 124, 475 (2018). https://doi.org/10.1007/s00339-018-1890-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1890-0

Navigation