Skip to main content
Log in

Titanium nitride formation by a dual-stage femtosecond laser process

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Formation of TiN by femtosecond laser processing in controlled gas atmosphere is reported. A dual-stage process was designed and aimed to first remove and restructure the native oxide layer of titanium surface through laser irradiation under an argon-controlled atmosphere, and then to maximize titanium nitride formation through an irradiation under a nitrogen reactive environment. An extensive XPS study was performed to identify and quantify laser-induced titanium surface chemistry modifications after a single-stage laser process (Ar and N2 individually), and a dual-stage laser process. The importance of each step that composes the dual-stage laser process was demonstrated and leads to the dual-stage laser process for the formation of TiO, Ti2O3 and TiN. In this study, the largest nitride formation occurs for the dual stage process with laser conditions at 4 W/1.3 J cm−2 under argon and 5 W/1.6 J cm−2 under nitrogen, yielding a total TiN composition of 8.9%. Characterization of both single-stage and dual-stage laser process-induced surface morphologies has been performed as well, leading to the observation of a wide range of hierarchical surface structures such as high-frequency ripples, grooves, protuberances and pillow-like patterns. Finally, water wettability was assessed by means of contact angle measurements on untreated titanium surface, and titanium surfaces resulting from either single-stage laser process or dual-stage laser process. Dual-stage laser process allows a transition of titanium surface, from phobic (93°) to philic (35°), making accessible both hydrophilic and chemically functionalized hierarchical surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. A.Y. Vorobyev, C. Guo, Multifunctional surfaces produced by femtosecond laser pulses. J. Appl. Phys. 117, 033103:1–5 (2015)

    Article  Google Scholar 

  2. A.Y. Vorobyev, C. Guo, Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev 7, 3 (2013)

    Article  Google Scholar 

  3. J. Bonse, S.V. Kirner, S. Höhm, N. Epperlein, D. Spaltmann, A. Rosenfeld, J. Krüger, Applications of laser-induced periodic surface structures (LIPSS), Invited Paper Proc. of SPIE Vol. 10092

  4. S. Hammouti, B. Holybee, M. Christenson, M. Szott, K. Kalathiparambil, S. Stemmley, B. Jurczyk, D.N. Ruzic, Wetting of liquid lithium on microtextured fusion-relevant materials by femtosecond exposure. J. Nucl. Mat. (Manuscript submitted for publication)

  5. C. Yao, S. Xu, Y. Ye, Y. Jiang, R. Ding, W. Gao, X. Yuan, The influence of femtosecond laser repetition rates and pulse numbers on the formation of micro/nano structures on stainless steel. J. Alloys Compd. 722, 235–241 (2017)

    Article  Google Scholar 

  6. N. Yasumaru, K. Miyazaki, J. Kiuchi, Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN. Appl. Phys. A 81, 933–937 (2005)

    Article  ADS  Google Scholar 

  7. O. Armbruster, A. Naghilou, M. Kitzler, W. Kautek, Spot size and pulse number dependence of femtosecond laser ablation thresholds of silicon and stainless steel. Appl. Surf. Sci. 396, 1736–1740 (2017)

    Article  ADS  Google Scholar 

  8. J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, Femtosecond laser-induced periodic surface structures. J. Laser Appl. Vol. 24, 4 (2002)

    Google Scholar 

  9. B.K.K. Nayak, M.C.C. Gupta, Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation. Optics and Lasers Eng. 48, 940–949 (2010)

    Article  ADS  Google Scholar 

  10. A. Vorobyev, C. Guo, Femtosecond laser structuring of titanium implants. Appl. Surf. Sci. 253, 7272–7280 (2007)

    Article  ADS  Google Scholar 

  11. S. Hammouti, A. Pascale-Hamri, N. Faure, B. Beaugiraud, M. Guibert, C. Mauclair, S. Benayoun, S. Valette, Wear rate control of peek surfaces modified by femtosecond laser. Appl. Surf. Sci. 357, 1541–1551 (2015)

    Article  ADS  Google Scholar 

  12. J. Bonse, S.V. Kirner, R. Koter, S. Pentzien, D. Spaltmann, J. Krüger, Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications. Appl. Surf. Sci. 418(Part B), 572–579 (2017)

    Article  ADS  Google Scholar 

  13. N. Epperlein, F. Menzel, K. Schwibber, R. Koter, J. Bonse, J. Sameith, J. Krüger, J. Toepel, Influence of femtosecond laser produced nanostructures on biofilm growth on steel. Appl. Surf. Sci 418, 420–424 (2017)

    Article  ADS  Google Scholar 

  14. D. Hoeche, P. Schaaf, Laser nitriding: Investigations on the model system TiN. A review. Heat Mass Transf 47(5), 519–540 (2010)

    Article  ADS  Google Scholar 

  15. P. Schaaf, T.M. Kahle, E. Carpene, Reactive laser plasma coating formation. Surf. Coat. Technol. 200, 608–611 (2005)

    Article  Google Scholar 

  16. E. Carpene, M. Shinn, P. Schaaf, Free-electron laser surface processing of titanium in nitrogen atmosphere. Appl. Surf. Sci. 247, 307–312 (2005)

    Article  ADS  Google Scholar 

  17. E. Carpene, P. Schaaf, M. Han, K. Lieb, M. Shinn, Reactive surface processing by irradiation with excimer laser, Nd: YAG laser, free electron laser and Ti: sapphire laser in nitrogen atmosphere. Appl. Surf. Sci. 186, 195–199 (2002)

    Article  ADS  Google Scholar 

  18. J. Krüger, W. Kautek, Ultrashort pulse laser interaction with dielectrics and polymers. Adv. Polym. Sci. 168, 247–290 (2004)

    Article  Google Scholar 

  19. J.M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 7(5), 196–198 (1982)

    Article  ADS  Google Scholar 

  20. V. Belaud, S. Valette, G. Stremsdoerfer, B. Beaugiraud, E. Audouard, S. Benayoun, Femtosecond laser ablation of polypropylene: a statistical approach of morphological data. Scanning 36, 209–217 (2014)

    Google Scholar 

  21. D. Nečas, P. Klapetek, Gwyddion: an open-source software for SPM dataanalysis. Centr. Eur. J. Phys. 10(1), 181–188 (2012)

    ADS  Google Scholar 

  22. E. McCafferty, J.P. Wightman, An X-ray photoelectron spectroscopy sputter profile study of the native air-formed oxide film on titanium. Appl. Surf. Sci. 1431, 92–100 (1999)

    Article  ADS  Google Scholar 

  23. T. Choudhury, S.O. Saied, J.L. Sullivan, A.M. Abbot, Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment. J. Phys. D Appl. Phys. 22 8, 1185 (1989)

    Article  ADS  Google Scholar 

  24. A.F. Carley, P.R. Chalker, J.C. Riviereand, M.W. Roberts, The identification and characterisation of mixed oxidation states at oxidised titanium surfaces by analysis of X-ray photoelectron spectra. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 83(2), 351–370 (1987)

    Google Scholar 

  25. N.C. Saha, H.G. Tompkins, Titanium nitride oxidation chemistry: An X-ray photoelectron spectroscopy study. J. Appl. Phys. 72(7), 3072–3079 (1992)

    Article  ADS  Google Scholar 

  26. F.F.K.S.H. Esaka, K. Furuya, H. Shimada, M. Imamura, N. Matsubayashi, H. Sato, T. Kikuchi, Comparison of surface oxidation of titanium nitride and chromium nitride films studied by X-ray absorption and photoelectron spectroscopy. J. Vac. Sci. Technol. A Vac. Surf. Films 15(5), 2521–2528 (1997)

    Article  ADS  Google Scholar 

  27. P. Prieto, R.E. Kirby, X-ray photoelectron spectroscopy study of the difference between reactively evaporated and direct sputter-deposited TiN films and their oxidation properties. J. Vac. Sci. Technol. A Vac. Surf. Films 13(6), 2819–2826 (1995)

    Article  ADS  Google Scholar 

  28. X.L. Mao, W.T. Chan, M.A. Shannon, R.E. Russo, Plasma shielding during picosecond laser sampling of solid materials by ablation in He versus Ar atmosphere. J. Appl. Phys. 74, 4915–4922 (1993)

    Article  ADS  Google Scholar 

  29. R. Buividas, M. Mikutis, S. Juodkazis, Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances. Prog. Quantum Electron. 38, 119–156 (2014)

    Article  ADS  Google Scholar 

  30. J. Bonse, A. Rosenfeld, J. Krüger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses. J. Appl. Phys. 106, 104910 (2009)

    Article  ADS  Google Scholar 

  31. G.A. Martsinovskii, G.D. Shandybina, D.S. Smirnov, S.V. Zabotnov, L.A. Golovan, V.Yu.. Timoshenko, P.K. Kashkarov, Ultrashort excitations of surface polaritons and waveguide modes in semiconductors. Opt. Spectrosc 105, 67–72 (2008)

    Article  ADS  Google Scholar 

  32. J. Reif, F. Costache, M. Henyk, S.V. Pandelov, Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics. Appl. Surf. Sci. 197–198, 891–895. (2002)

    Article  Google Scholar 

  33. A. Borowiec, H.K. Haugen, Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 82, 4462–4464 (2003)

    Article  ADS  Google Scholar 

  34. D. Dufft, A. Rosenfeld, S.K. Das, R. Grunwald, J. Bonse, Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO. J. Appl. Phys. 105 034908 (2009). https://doi.org/10.1063/1.3074106

    Article  ADS  Google Scholar 

  35. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Laser-induced periodic surface structure. I. Theory. Phys. Rev. B: Condens. Matter 27, 1141–1154 (1983)

    Article  ADS  Google Scholar 

  36. J.F. Young, J.S. Preston, H.M. van Driel, J.E. Sipe, Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Phys. Rev. B Condens. Matter 27(2), 1155–1172 (1983)

    Article  ADS  Google Scholar 

  37. J. Schille, R. Ebert, U. Loeschner, P. Regenfuss, T. Suess, H. Exner, Micro structuring with highly repetitive ultrashort laser pulses, in Proceedings of LPM 2008 (June)—The 9th international symposium on laser precision microfabrication, Quebec, Canada

  38. J. Lehr, F. de Marchi, L. Matus, J. MacLeod, F. Rosei, A.-M. Kietzig, The influence of the gas environment on morphology and chemical composition of surfaces micro-machined with a femtosecond laser. Appl. Surf. Sci. 320, 455–465 (2014)

    Article  ADS  Google Scholar 

  39. T. Smausz, T. Csizmadia, C. Tápai, J. Kopniczky, A. Oszkó, M. Ehrhardt, P. Lorenz, K. Zimmer, A. Prager, B. Hopp, Study on the effect of ambient gas on nanostructure formation on metal surfaces during femtosecond laser ablation for fabrication of low-reflective surfaces. Appl. Surf. Sci. 389, 1113–1119 (2016)

    Article  ADS  Google Scholar 

  40. B.K. Nayak, M.C. Gupta, K.W. Kolasinski, Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation. Appl. Phys. A Mater. Sci. Process. 90, 399–402 (2008)

    Article  ADS  Google Scholar 

  41. S. Ju, J.P. Longtin, Effects of a gas medium on ultrafast laser beam delivery and materials processing. J. Opt. Soc. Am. B Opt. Phys. 21, 1081–1088 (2004)

    Article  ADS  Google Scholar 

  42. P.G. de Gennes, Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827 (1985)

    Article  ADS  Google Scholar 

  43. F.M. El-Hossary, N.Z. Negm, A.M. Abd El-Rahman, M. Raaif, A. A. Abd Elmula, Properties of titanium oxynitride prepared by RF plasma, ACES 5, 1–14 (2015)

    Article  Google Scholar 

  44. P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, E. Audouard, Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment. Appl. Surf. Sci. 257, 5213–5218 (2011)

    Article  ADS  Google Scholar 

  45. A.-M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Patterned superhydrophobic metallic surfaces. Langmuir 25(8), 4821–4827 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the DOE Phase II SBIR/STTR (award number DE-SC0011851) and Starfire Industries LLC. Parts of this research were carried out in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois, which is partially supported by the U.S. Department of Energy under Grant nos. DEFG02-07ER46453 and DE-FG02-07ER46471.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Ruzic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammouti, S., Holybee, B., Zhu, W. et al. Titanium nitride formation by a dual-stage femtosecond laser process. Appl. Phys. A 124, 411 (2018). https://doi.org/10.1007/s00339-018-1824-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1824-x

Navigation