Skip to main content
Log in

Thermal effect of laser ablation on the surface of carbon fiber reinforced plastic during laser processing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Although laser processing is widely used for many applications, the cutting quality of carbon fiber reinforced plastic (CFRP) decreases around the heat-affected zone (HAZ) during laser processing. Carbon fibers are exposed around the HAZ, and tensile strength decreases with increasing length of the HAZ. Some theoretical studies of thermal conductions that do not consider fluid dynamics have been performed; however, theoretical considerations that include the dynamics of laser ablation are scarce. Using removed mass and depth observed from experiments, the dynamics of laser ablation of CFRP with high-temperature and high-pressure of compressive gas is simulated herein. In this calculation, the mushroom-like shape of laser ablation is qualitatively simulated compared with experiments using a high-speed camera. Considering the removal temperature of the resin and the temperature distribution at each point on the surface, the simulation results suggest that a wide area of the resin is removed when the processing depth is shallow, and a rounded kerf is generated as the processing depth increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Shimizu, Rev. Laser Eng. 38, 603–608 (2010) (in Japanese)

    Google Scholar 

  2. W.C. Chen, Int. J. Mach. Tools. Manuf. 37, 1097–1108 (1997)

    Google Scholar 

  3. H. Hocheng, C.C. Tsao, J. Mater. Proc. Technol. 167, 251–264 (2005)

    Article  Google Scholar 

  4. C.F. Cheng, Y.C. Tsui, T.W. Clyne, Acta Mater. 12, 4273–4285 (1998)

    Google Scholar 

  5. D. Iliescu, D. Gehin, M.E. Gutierrez, F. Girot, Phys. Procedia 50, 204–213 (2010)

    Google Scholar 

  6. J. Stock, M.F. Zaef, M. Conrad, Phys. Procedia 39, 161–170 (2012)

    Article  Google Scholar 

  7. K.W. Jung, Y. Kawahito, S. Katayama, J. Laser Appl. 24, 012007 (2012)

    Article  ADS  Google Scholar 

  8. A. Klotzbach, M. Hauser, E. Beyer, Phys. Procedia 12, 572–577 (2011)

    Google Scholar 

  9. F. Riveiro, F. Quintero, J. Lusquinos, R. del Val, M. Comesana, A. Boutinguiza, J. Pou, Compos. Part A 43, 1400–1409 (2013)

    Google Scholar 

  10. C. Emmelmann, M. Petersen, A. Goeke, M. Canisius, Phys. Procedia 12, 565–571 (2011)

    Google Scholar 

  11. D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, Int. J. Mach. Tools. Manuf. 48, 1464–1473 (2008)

    Article  Google Scholar 

  12. Y. Sato, M. Tsukamoto, K. Nakai, T. Nariyama, K. Takahashi, S. Masuno, H. Nakano, in Proceedings of ICALEO M1002 (2013)

  13. Y. Sato, M. Tsukamoto, T. Nariyama, K. Nakai, F. Matsuoka, K. Takahashi, S. Masuno, T. Ohkubo, Rev. Laser Eng. 42, 4 (2014) (in Japanese)

    Google Scholar 

  14. Y. Sato, M. Tsukamoto, F. Matsuoka, K. Yamashita, K. Takahashi, S. Masuno, Trans. Fundam. Mater. Inst. Electr. Eng. Jpn. 135, 335–340 (2015) (in Japanese)

    Google Scholar 

  15. Y. Sato, M. Tsukamoto, F. Matsuoka, T. Ohkubo, N. Abe, Appl. Surf. Sci. 417, 250–255 (2017)

    Article  Google Scholar 

  16. R. Negarestani, M. Sundar, M.A. Sheikh, P. Mativenga, L. Li, Z.L. Li, P.L. Chu, C.C. Khin, H.Y. Zheng, G.C. Lim, Proc. IMechE Part B J. Eng. Manuf. 224, 1017–1027 (2010)

    Article  Google Scholar 

  17. T. Ohkubo, M. Tsukamoto, Y. Sato, Phys. Procedia 56, 1165–1170 (2014)

    Article  Google Scholar 

  18. K. Takahashi, M. Tsukamoto, S. Masuno, Y. Sato, Compos. Part A 84, 114–122 (2016)

    Article  Google Scholar 

  19. T. Ohkubo, Y. Sato, M. Tsukamoto, Appl. Phys. A 122, 196 (2016)

    Article  ADS  Google Scholar 

  20. T. Ohkubo, Y. Sato, E. Matsunaga, M. Tsukamoto, Appl. Surf. Sci. 417, 104–107 (2017)

    Google Scholar 

  21. T. Okubo, Y. Sato, E. Matsunaga, M. Tsukamoto, Rev. Laser Eng. 44, 814–818 (2016) (in Japanese)

    Google Scholar 

  22. L. Romoli, F. Fischer, R. Kling, Opt. Laser Eng. 50, 449–457 (2012)

    Article  Google Scholar 

  23. J.J. Blaker, D.B. Anthony, G. Tang, S.R. Shamsuddin, G. Kalinka, M. Weinrich, A. Abdolvand, M.S.P. Shaffer, A. Bismarck, ACS Appl. Mater. Interfaces 8, 16351–16358 (2016)

    Article  Google Scholar 

  24. J. Finger, M. Weinand, D. Wortmann, J. Laser Appl. 25, 042001 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This study is partially supported by Amada Foundation (Grant number: AF-2015209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomomasa Ohkubo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohkubo, T., Sato, Y., Matsunaga, Ei. et al. Thermal effect of laser ablation on the surface of carbon fiber reinforced plastic during laser processing. Appl. Phys. A 124, 149 (2018). https://doi.org/10.1007/s00339-018-1578-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1578-5

Navigation