Skip to main content
Log in

Assessment of global solar radiation to examine the best locations to install a PV system in Tunisia

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The study of the solar radiation is the starting point of any investigation for a new energy, to study and search the best location to install a PV system. A very important factor in the assessment of solar potential is the availability of data for global solar radiation that must be coherent and of high quality. In this paper, we analyze the estimation result of the monthly global solar radiation for three different locations, Bizerte in Northern Tunisia, Kairouan in Middle Eastern Tunisia, and Tozeur in Southern Tunisia, measured on the surface by the National Institute of Meteorology and the meteorological year irradiation based on satellite imagery result PVGIS radiation databases. To get the right measurements with minimum error, we propose a numerical model used to calculate the global solar radiation in the indicated three sites. The results show that the model can estimate the global solar radiation (kWh/m²) at a specific station and over most area of Tunisia. The model gives a good estimation for solar radiation where error between the measured values and those calculated are negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Iqbal, An introduction to solar radiation (Academic Press, New York, 1983), pp. 91–94

    Google Scholar 

  2. V. Simathavi, R.S. Selvaraj, Prediction of monthly mean daily global solar radiation using artificial Neural Network. J Earth Syst Sci 121(6), 1501–510 (2012)

    Article  ADS  Google Scholar 

  3. D.T. Reindl, W.A. Beckman, J.A. Duffie, Diffuse fraction corrections. Sol. Energy 45(1), 1–7 (1990)

    Article  ADS  Google Scholar 

  4. W. Derouich, M. Besbes, J.D. Oliveincia, Prefeasibility study of a solar power plant project and optimization of a meteorological station performance. JART 12, 72–79 (2014)

    Article  Google Scholar 

  5. J. Tovar, F.J. Olmob, L. Alados, One-minute global irradiance probability density distributions conditioned to the optical air-mass. Sol. Energy 62(6), 387–393 (1998)

    Article  ADS  Google Scholar 

  6. Y. El Mghouchi, A. EL Bouardi, Z. Choulli, T. Ajzoul, New model to estimate and evaluate the solar radiation. Int J Sustain Built Environ 3, 225–234 (2014)

    Article  Google Scholar 

  7. Z. Sen, Fuzzy algorithm for estimation of solar irradiation from sunshine duration. Sol. Energy 63(1), 39–49 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  8. S.M. Jeter, C.A. Balaras, Development of improved solar radiation models for predicting beam transmittance. Sol. Energy 44(3), 149–156 (1990)

    Article  ADS  Google Scholar 

  9. M. Mohandes, A. Balghonaim, M. Kassas, T.O. Halawani, TO. Use of radial basis functions for estimating monthly mean daily solar-radiation. Sol. Energy 68(2), 161–168 (2000)

    Article  ADS  Google Scholar 

  10. M. Soulaiman, A. Umar, A comparative analysis of empirical models for the estimation of monthly mean daily global solar radiation using different climate parameters in Sokoto, Nigeria. Int. J. Mar. Atmos. Earth Sci. 5, 1–19 (2017)

    Google Scholar 

  11. F.J. Batlles, J. Tovar, F.J. Olmo, L. Alados, Empirical modeling of hourly direct irradiance by means of hourly global irradiance. Energy 25(7), 675–688 (2000)

    Article  Google Scholar 

  12. T.J. Cartwright, Here comes the Sun: solar energy from a flat-plate collector. In: Modeling the world in a spreadsheet-environmental simulation on a microcomputer, London. (The Johns Hopkins University Press, Baltimore, 1993), pp. 121–144

    Google Scholar 

  13. F. Vignola, Solar cell based pyranometers: evaluation of diffuse responsivity. In: Proceedings of the 1999 Annual Conference American Solar Energy Society (1999)

  14. S.K. Srivastava, O.P. Singh, G.N. Pandey, Estimation of global solar radiation in Uttar Pradesh (India) and comparison of some existing correlations. Sol. Energy 51(1), 27–29 (1993)

    Article  ADS  Google Scholar 

  15. J. Camps, M.R. Soler, Estimation of diffuse solar irradiance on a horizontal surface for cloudless days: a new approach. Sol. Energy 49(1), 53–63 (1992)

    Article  ADS  Google Scholar 

  16. D.L. King, J.A. Kratochvil, E.B. William, (1997) Measuring solar spectral and angle-of-incidence effects on photovoltaic modules and solar irradiance sensors. In: 26th IEEE Photovoltaic Specialists Conference. Anaheim

  17. J.A. Davies, D.C. McKay, Estimating solar irradiance and components. Sol. Energy 29(1), 55–64 (1982)

    Article  ADS  Google Scholar 

  18. A. Behdashti, M. Ebrahimpour, B. Vahidi, V. Omidipour, A. Alizadeh, Field experiments and technical evaluation of an optimized media evaporative cooler for gas turbine power augmentation. J. Appl. Res. Technol. (JART) 10, 458–471 (2012)

    Google Scholar 

  19. Y. Bulent, K. Osman, O. Coskun, The global solar radiation estimation and analysis of solar energy: Case study for Osmaniye, Turkey. Int. J. Green Energy 14, 765–773 (2017)

    Article  Google Scholar 

  20. H. Basak, C. Ozgur, T. Ahmet, B. Burak, Estimating daily Global solar radiation with graphical user interface in Eastern Mediterranean region of Turkey. Renew. Sustain. Energy Rev. 82, 1528–1537 (2017)

    Google Scholar 

  21. C.R.N. Rao, A.B. William, T.Y. Lee, The diffuse component of the daily global solar-irradiation at Corvallis, Oregon (USA). Sol. Energy 32(5), 637–641 (1984)

    Article  ADS  Google Scholar 

  22. F. Batlles, F.J. Olmo, L. Alados, On shadowband correction methods for diffuse irradiance measurements. Sol. Energy 54(2), 105–114 (1995)

    Article  ADS  Google Scholar 

  23. F.J. Batlles, M.A. Rubio, J. Tovar, F.J. Olmo, L. Alados, Empirical modeling of hourly direct irradiance by means of hourly global irradiance. Energy 25(7), 675–688 (2000)

    Article  Google Scholar 

  24. J.D. Garrison, A study of the division of global irradiance into direct and diffuse irradiances at thirty three US sites. Sol. Energy 35(4), 341–351 (1985)

    Article  ADS  Google Scholar 

  25. C. Gueymard, P. Jindra, V. Estrada-Cajigal, A critical look at recent interpretations of the Angstrom approach and its future in global solar radiation prediction. Sol. Energy 54(5), 357–363 (1995)

    Article  ADS  Google Scholar 

  26. T.K. Ibrahim, M.M. Rahman, Thermal impact of operating conditions on the performance of a combined cycle gas turbine. J. Appl. Res. Technol. (JART) 10, 567–578 (2012)

    Google Scholar 

  27. C. Gueymard, Critical analysis and performance assessment of clear-sky solar-irradiance models using theoretical and measured data. Sol. Energy 51(2), 121–138 (1993)

    Article  ADS  Google Scholar 

  28. J. Augustyn et al., Update of Algorithm to Correct Direct Normal Irradiance Measurements Made with a Rotating Shadow Band Pyranometer. Proc. Solar (American Solar Energy Society, Boulder, 2004)

    Google Scholar 

  29. T. Huld, PVMAPS: Software tools and data for the estimation of solar radiation and photovoltaic module performance over large geographical areas. Sol. Energy 142, 171–181 (2017)

    Article  ADS  Google Scholar 

  30. K. Rajesh, R.K. Aggarwal, J.D. Sharma, Comparison of regression and artificial neural network models for estimation of global solar radiations. Renew. Sustain. Energy Rev. 52, 1294–1299 (2015)

    Article  Google Scholar 

  31. S. Belaid, A. Mellit, Prediction of daily and mean monthly global solar radiation using support vector machine in an arid climate. Energy Convers. Manag. 118, 105–118 (2016)

    Article  Google Scholar 

  32. C. Roulet, Solar energie and global heat balance of a city. Sol. Energy 70(3), 255–261 (2001)

    Article  ADS  Google Scholar 

  33. T. Ahmet, H. Basak, C. Ozkur, Evaluation and performance comparison of different models for the estimation of solar radiation. Renew. Sustain. Energy Rev. 50, 1097–1107 (2015)

    Article  Google Scholar 

  34. J.J. Carroll, Global transmissivity and diffuse fraction of solar radiation for clear and cloudy skies as measured and as predicted by bulk transmissivity models. Sol. Energy 35(2), 105–118 (1985)

    Article  ADS  Google Scholar 

  35. C. Gueymard, Mathematically integrable parametrization of clear-sky beam and global irradiances and its use in daily irradiation applications. Sol. Energy 50(5), 385–397 (1993)

    Article  ADS  Google Scholar 

  36. J.A. Duffie, W.A. Bechman, Solar Engineering of Thermal Processes, 3rd edn. (Wiley, Chichester, 2006)

    Google Scholar 

  37. R.J. Stone, Improved statical procedure for the evaluation of solar radiation estimation models. Sol. Energy 51(4), 289–291 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaouther Belkilani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkilani, K., Ben Othman, A. & Besbes, M. Assessment of global solar radiation to examine the best locations to install a PV system in Tunisia. Appl. Phys. A 124, 122 (2018). https://doi.org/10.1007/s00339-018-1551-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1551-3

Navigation