Skip to main content
Log in

Light-driven self-assembly of hetero-shaped gold nanorods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Light-driven self-assembly and coalescence of two nearby hetero-shaped gold nanorods (GNRs) with different lengths are studied theoretically. The optical forces and torques, in terms of Maxwell’s stress tensor, upon these GNRs provided by a linearly polarized (LP) plane wave are analyzed using the multiple multipole (MMP) method. Numerical results show that the optical torque dominates their alignments and the optical force their attraction. The most likely outcome of the plasmon-mediated light–matter interaction is wavelength dependent. Three different coalescences of the two GNRs could be induced by a LP light in three different wavelength regimes, respectively. For example, the side-by-side coalescence of two GNRs with radius of 15 nm and different lengths (120 and 240 nm) is induced in water as irradiated by a LP light at 633 nm, the T-shaped one at 1064 nm, and the end-to-end one at 1700 nm. The plasmonic attractive force and heating power densities inside GNRs with different gaps are also studied; the smaller the gap, the larger the attractive force and heating power. The results imply that the plasmonic coalescence and heating of two discrete GNRs may cause the local fusion at the junction of the assembly and the subsequent annealing (even recrystallization). Because the heating makes the two discrete GNRs fused to become a new nanostructure, the plasmonic coalescence of optical manipulation is irreversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.L. Juan, M. Righini, R. Quidant, Plasmon nano-optical tweezers. Nat. Photonics 5, 349–356 (2011)

    Article  ADS  Google Scholar 

  2. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, X. Yuan, Focused plasmonic trapping of metallic particles. Nat. Commun. 4, 2891 (2013)

    ADS  Google Scholar 

  3. T.V. Raziman, R.J. Wolke, O.J.F. Martin, Optical forces in nanoplasmonic systems: how do they work, what can they be useful for? Faraday Discuss 178, 421–434 (2015)

    Article  ADS  Google Scholar 

  4. A. Serkov et al., Self-assembly of nanoparticles into nanowires under laser exposure in liquids. Chem. Phys. Lett. 623, 93–97 (2015)

    Article  ADS  Google Scholar 

  5. R.A. Nome, M.J. Guffey, N.F. Scherer, S.K. Gray, Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers. J. Phys. Chem. A 113(16), 4408–4415 (2009)

    Article  Google Scholar 

  6. M. Fujii, Finite-difference analysis of plasmon-induced forces of metal nano-clusters by the Lorentz force formulation. Opt. Express 18(26), 27731–27747 (2010)

    Article  ADS  Google Scholar 

  7. J.W. Liaw, H.Y. Wu, C.C. Huang, M.K. Kuo, Metal enhanced fluorescence of silver island associated with silver nanoparticle. Nanoscale Res. Lett. 11, 26 (2016)

    Article  ADS  Google Scholar 

  8. S.V. Perminov, V.P. Drachev, S.G. Rautian, Optical bistability driven by the light-induced forces between metal nanoparticles. Opt. Lett. 33(24), 2998–3000 (2008)

    Article  ADS  Google Scholar 

  9. R. Zhao, P. Tassin, T. Koschny, C.M. Soukoulis, Optical forces in nanowire pairs and metamaterials. Opt. Express 18(25), 25665–25676 (2010)

    Article  ADS  Google Scholar 

  10. Q. Zhang et al., Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer. Opt. Express 21(5), 6601–6608 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Y.Q. Wang, W.S. Liang, C.Y. Geng, Coalescence behavior of gold nanoparticles. Nanoscale Res. Lett. 4, 684–688 (2009)

    Article  ADS  Google Scholar 

  12. G. González-Rubio, J. González-Izquierdo, L. Bañares, G. Tardajos, A. Rivera, T. Altantzis, S. Bals, O. Peña-Rodríguez, A. Guerrero-Martínez, L.M. Liz-Marzán, Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods. Nano Lett. 15(12), 8282–8288 (2015)

    Article  ADS  Google Scholar 

  13. T. Iida, Control of plasmonic superradiance in metallic nanoparticle assembly by light-induced force and fluctuations. J. Phys. Chem. Lett. 3, 332–336 (2012)

    Article  Google Scholar 

  14. L. Tong, V.D. Miljković, M. Käll, Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett. 10, 268–273 (2010)

    Article  ADS  Google Scholar 

  15. J.W. Liaw, W.J. Lo, M.K. Kuo, Wavelength-dependent longitudinal polarizability of gold nanorod on optical torque. Opt. Express 22(9), 10858–10867 (2014)

    Article  ADS  Google Scholar 

  16. J.W. Liaw, W.J. Lo, W.C. Lin, M.K. Kuo, Theoretical study of optical torques for alignments of Ag nanorod and nanowire. J. Quant. Spectrosc. Radiat. Transfer 162, 133–142 (2015)

    Article  ADS  Google Scholar 

  17. J.W. Liaw, Y.S. Chen, M.K. Kuo, Maxwell stress induced optical torque upon gold prolate nanospheroid. Appl. Phys. A 122(3), 182 (2016)

    Article  ADS  Google Scholar 

  18. M. Moocarme, B. Kusin, L.T. Vuong, Plasmon-induced Lorentz forces of nanowire chiral hybrid modes. Opt. Mater. Express 4(11), 2355–2367 (2014)

    Article  Google Scholar 

  19. A. Babynina, M. Fedoruk, P. Kühler, A. Meledin, M. Döblinger, T. Lohmüller, Bending gold nanorods with light. Nano Lett. 16, 6485–6490 (2016)

    Article  ADS  Google Scholar 

  20. J.W. Liaw, W.C. Lin, M.K. Kuo, Wavelength-dependent plasmon-mediated coalescence of two gold nanorods. Sci. Rep. 7, 46095 (2017)

    Article  ADS  Google Scholar 

  21. S. Ito, H. Yamauchi, M. Tamura, S. Hidaka, H. Hattori, T. Hamada, K. Nishida, S. Tokonami, T. Itoh, H. Miyasaka, T. Iida, Selective optical assembly of highly uniform nanoparticles by doughnut-shaped beams. Sci. Rep. 3, 3047 (2013)

    Article  ADS  Google Scholar 

  22. S.Y. Yu, H. Gunawan, S.W. Tsai, Y.J. Chen, T.C. Yen, J.W. Liaw, Single-crystalline gold nanowires synthesized from light-driven oriented attachment and plasmon-mediated self-assembly of gold nanorods or nanoparticles. Sci. Rep. 7, 44680 (2017)

    Article  ADS  Google Scholar 

  23. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    Article  ADS  Google Scholar 

  24. J. Aizpurua, G.W. Bryant, L.J. Richter, F.J. García de Abajo, B.K. Kelley, T. Mallouk, Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys. Rev. B 71, 235420 (2005)

    Article  ADS  Google Scholar 

  25. L. Ling, H.L. Guo, X.L. Zhong, L. Huang, J.F. Li, L. Gan, Z.Y. Li, Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control. Nanotechnology 23, 215302 (2012)

    Article  ADS  Google Scholar 

  26. M. Gordel, K. Piela, R. Kołkowski, T. Kozlecki, M. Buckle, M. Samoc, End-to-end self-assembly of gold nanorods in isopropanol solution: experimental and theoretical studies. J. Nanopart. Res. 17, 477 (2015)

    Article  ADS  Google Scholar 

  27. B. Ingham, T.H. Lim, C.J. Dotzler, A. Henning, M.F. Toney, R.D. Tilley, How nanoparticles coalesce: an in situ study of Au nanoparticle aggregation and grain growth. Chem. Mater. 23, 3312–3317 (2011)

    Article  Google Scholar 

  28. J. Wang, S. Chen, K. Cui, D. Li, D. Chen, Approach and coalescence of gold nanoparticles driven by surface thermodynamic fluctuations and atomic interaction forces. ACS Nano 10, 2893–2902 (2016)

    Article  Google Scholar 

  29. S. Raza, S.M. Esfandyarpour, A.L. Koh, N.A. Mortensen, M.L. Brongersma, S.I. Bozhevolnyi, Electron energy-loss spectroscopy of branched gap plasmon resonators. Nat. Commun. 7, 13790 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research was supported by Ministry of Science and Technology, Taiwan (MOST 103-2221-E-182-033-MY2, 103-2112-M-019-003-MY3, 104-2221-E-182-053, 105-2221-E-182-031, 105-2221-E-002-079) and Chang Gung Memorial Hospital (CIRPD2E0032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiunn-Woei Liaw or Mao-Kuen Kuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liaw, JW., Chao, HY., Huang, CW. et al. Light-driven self-assembly of hetero-shaped gold nanorods. Appl. Phys. A 124, 16 (2018). https://doi.org/10.1007/s00339-017-1432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1432-1

Navigation