Skip to main content
Log in

Sensing of low concentration of ammonia at room temperature by decorated multi-walled carbon nanotube: fabrication and characteristics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A chemical sensor based on multi-walled carbon nanotube (MWCNT) decorated with densely populated thiol-capped gold nanoparticles (AuNPs) with sizes smaller than 3 nm for sensing low concentrations of ammonia gas is reported. The functionalized MWCNTs, subsequently decorated with AuNPs following an easy fabrication route were exposed to NH3 gas at the room temperature and the electrical resistance of the sensor changed upon exposure. The sensor also partially recovered the initial state after sensing in the normal air environment (without any dry air or N2 gas purge). The gold nanoparticles decoration is found to enhance the sensitivity and selectivity of MWCNT towards NH3 gas under ambient conditions with a reduced response and recovery time. The material was structurally characterized by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. Thermal stability of the sensor till 574 °C was demonstrated by TGA analysis. This papers describes how thiol-capped AuNPs are uniformly decorated on the outer walls of the MWCNTs with a separation of 2–3 nm making use of the ionic nature of Au and how this uniform distribution of AuNPs increases the active sites for absorption of NH3 gas molecules leading to sensing its low concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T.H. Risby, S. Solga, Appl. Phys. B 85(2–3), 421 (2006)

    Article  ADS  Google Scholar 

  2. S. Iijima et al., Nature 354(6348), 56 (1991)

    Article  ADS  Google Scholar 

  3. S.J. Choi, B.H. Jang, S.J. Lee, B.K. Min, A. Rothschild, I.D. Kim, ACS Appl. Mater. Interfaces 6(4), 2588 (2014)

    Article  Google Scholar 

  4. W.L. Yim, X. Gong, Z.F. Liu, J. Phys. Chem. B 107(35), 9363 (2003)

    Article  Google Scholar 

  5. B.S. Sherigara, W. Kutner, F. D’Souza, Electroanalysis 15(9), 753 (2003)

    Article  Google Scholar 

  6. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287(5453), 622 (2000)

    Article  ADS  Google Scholar 

  7. L.R. Shobin, S. Manivannan, Sens Actuators B Chem. 220, 1178 (2015)

    Article  Google Scholar 

  8. A. Aqel, K.M.A. El-Nour, R.A. Ammar, A. Al-Warthan, Arabian J. Chem. 5(1), 1 (2012)

    Article  Google Scholar 

  9. J. Zhao, A. Buldum, J. Han, J.P. Lu, Nanotechnology 13(2), 195 (2002)

    Article  ADS  Google Scholar 

  10. S. Cui, H. Pu, G. Lu, Z. Wen, E.C. Mattson, C. Hirschmugl, M. Gajdardziska-Josifovska, M. Weinert, J. Chen, ACS Appl. Mater. Interfaces 4(9), 4898 (2002)

    Article  Google Scholar 

  11. L. Huang, P. Jiang, D. Wang, Y. Luo, M. Li, H. Lee, R.A. Gerhardt, Sens Actuators B Chem. 197, 308 (2014)

    Article  Google Scholar 

  12. S. Mun, Y. Chen, J. Kim, Sens Actuators B Chem. 171, 1186 (2012)

    Article  Google Scholar 

  13. M.O. Ansari, S.P. Ansari, S.K. Yadav, T. Anwer, M.H. Cho, F. Mohammad, J. Ind. Eng. Chem. 20(4), 2010 (2014)

    Article  Google Scholar 

  14. J.M. Tulliani, A. Cavalieri, S. Musso, E. Sardella, F. Geobaldo, Sens Actuators B Chem. 152(2), 144 (2011)

    Article  Google Scholar 

  15. Y. Tang, Q. Zhang, Y. Li, H. Wang, Sens Actuators B Chem. 169, 229 (2012)

    Article  Google Scholar 

  16. S. Sharma, S. Hussain, S. Singh, S. Islam, Sens Actuators B Chem. 194, 213 (2014)

    Article  Google Scholar 

  17. F. Rigoni, G. Drera, S. Pagliara, A. Goldoni, L. Sangaletti, Carbon 80, 356 (2014)

    Article  Google Scholar 

  18. F. Mendoza, D.M. Hern´andez, V. Makarov, E. Febus, B.R. Weiner, G. Morell, Sens Actuators B Chem. 190, 227 (2014)

    Article  Google Scholar 

  19. A. Pistone, A. Piperno, D. Iannazzo, N. Donato, M. Latino, D. Spadaro, G. Neri, Sens Actuators B Chem. 186, 333 (2013)

    Article  Google Scholar 

  20. S. Dhall, N. Jaggi, J. Mol. Struct. 1107, 300 (2016)

    Article  ADS  Google Scholar 

  21. Y. Lin, K. Kan, W. Song, G. Zhang, L. Dang, Y. Xie, P. Shen, L. Li, K. Shi, J. Alloy. Compd. 639, 187 (2015)

    Article  Google Scholar 

  22. L.K. Randeniya, P.J. Martin, A. Bendavid, J. McDonnell, Carbon 49(15), 5265 (2011)

    Article  Google Scholar 

  23. M. Penza, R. Rossi, M. Alvisi, G. Cassano, E. Serra, Sens Actuators B Chem. 140(1), 176 (2009)

    Article  Google Scholar 

  24. L.R. Shobin, S. Manivannan, Mater. Sci. Semicond. Process. 40, 931 (2015)

    Article  Google Scholar 

  25. A. Abdelhalim, M. Winkler, F. Loghin, C. Zeiser, P. Lugli, A. Abdellah, Sens Actuators B Chem. 220, 1288 (2015)

    Article  Google Scholar 

  26. M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, J. Chem. Soc., Chem. Commun. 7, 801 (1994)

    Article  Google Scholar 

  27. Y. Li, J. Gong, G. He, Y. Deng, Mater. Chem. Phys. 134(2), 1172 (2012)

    Article  Google Scholar 

  28. A. McNeillie, D.H. Brown, W.E. Smith, M. Gibson, L. Watson, Dalton Trans. 5, 767 (1980)

    Article  Google Scholar 

  29. D.H. Jung, B.H. Kim, Y.T. Lim, J. Kim, S.Y. Lee, H.T. Jung, Carbon 48(4), 1070 (2010)

    Article  Google Scholar 

  30. D.R. Kauffman, A. Star, Angew. Chem. Int. Ed. 47(35), 6550 (2008)

    Article  Google Scholar 

  31. J.C. Charlier, L. Arnaud, I. Avilov, M. Delgado, F. Demoisson, E. Espinosa, C.P. Ewels, A. Felten, J. Guillot, R. Ionescu et al., Nanotechnology 20(37), 375501 (2009)

    Article  Google Scholar 

  32. N. Peng, Q. Zhang, C.L. Chow, O.K. Tan, N. Marzari, Nano lett. 9(4), 1626 (2009)

    Article  ADS  Google Scholar 

  33. E. Kryachko, F. Remacle, J. Chem. Phys 127(19), 194305 (2007)D

    Article  ADS  Google Scholar 

  34. C. Rao, G. Kulkarni, P.J. Thomas, P.P. Edwards, Eur J. 8(1), 28 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

Authors thankfully acknowledge Dr Biswarup Satpati, Mr Ashis Kumar Kundu and Prof. Debapriya De and would like to acknowledge the Department of Atomic Energy (DAE) and the Director of the Saha Institute of Nuclear Physics (SINP) for financial and institutionalassistances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasnahena, S.T., Roy, M. Sensing of low concentration of ammonia at room temperature by decorated multi-walled carbon nanotube: fabrication and characteristics. Appl. Phys. A 124, 4 (2018). https://doi.org/10.1007/s00339-017-1405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1405-4

Navigation