Skip to main content
Log in

Experimental characterization of electrochemically polymerized polycarbazole film and study of its behavior with different metals contacts

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we present the method of fabrication, experimental characterization, and comparison of electrical parameters of semiconducting polycarbazole film with different rectifying metals contacts. Electrochemical polymerization and deposition of organic semiconductor, i.e., polycarbazole on ITO-coated glass substrate, were performed using an electrochemical workstation. Experimental characterization of the prepared polymer film was done in respect of morphology, absorption, bandgap, and thickness. The stability and electro-activity of polycarbazole film were verified by the cyclic voltammetric method. Study of the behavior of prepared polycarbazole film with the different metals contacts such as Aluminum, Copper, Tungsten, and Tin has been done using semiconductor device analyzer. Various electrical parameters such as barrier height, ideality factor, and reverse saturation current have been extracted with different metal contacts, and the values were compared and contrasted. The nature of IV characteristic of polycarbazole film in non-contact mode has also been analyzed using scanning tunneling microscope. The rectifying IV characteristics obtained with different metals contacts have also been validated by the simulation on Deckbuild platform of the of ATLAS® software tool from Silvaco Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Hideki, S. Ikeda, Infrared spectra of poly(acetylene). Polym. J. 2, 231–244 (1971)

    Article  Google Scholar 

  2. A.K. Singh, R. Prakash, A.D.D. Dwivedi, P. Chakrabarti, Electronic properties and junction behaviour of polyanthranilic acid/metal contacts. IEEE Electron Device Lett. 29, 571–574 (2008)

    Article  ADS  Google Scholar 

  3. A.K. Singh, R. Prakash, Organic Schottky diode based on conducting polymer–nanoclay composite. RSC Adv. 2, 5277–5283 (2012)

    Article  Google Scholar 

  4. A. Srivastava, P. Chakrabarti, An organic Schottky diode (OSD) based on a-silicon/polycarbazole contact. Synth. Met. 207, 96–101 (2015)

    Article  Google Scholar 

  5. A. Srivastava, P. Chakrabarti, Fabrication and electrical characterization of a polycarbazole/ZnO based organic-inorganic hybrid heterojunction diode. Superlattices Microstruct. 88, 723–730 (2015)

    Article  ADS  Google Scholar 

  6. A.K. Singh, A.D.D. Dwivedi, P. Chakrabarti, R. Prakash, Electronic and optical properties of electrochemically polymerized polycarbazole/aluminum Schottky diodes. J. Appl. Phys. 105, 114506-1–1145065-5 (2009)

    ADS  Google Scholar 

  7. A.D.D. Dwivedi, A.K. Singh, R. Prakash, P. Chakrabarti, A proposed organic Schottky barrier photodetector for application in the visible region. Curr. Appl. Phys. 10, 900–903 (2010)

    Article  ADS  Google Scholar 

  8. K. Gurunathan, A. Vadivel Murugan, R. Marimuthu, U.P. Mulik, D.P. Amalnerkar, Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Mater Chem Phys 61, 173–191 (1999)

    Article  Google Scholar 

  9. A.K. Singh, P. Chakrabarti, R. Prakash, Electronic properties and photoresponse of polycarbazole-multiwalled carbon nanotube nanocomposite/aluminum Schottky diode. IEEE Electron Dev. Lett. 32(5), 593–595 (2011)

    Article  ADS  Google Scholar 

  10. S. Cai, H. Wen, S. Wang, H. Niu, C. Wang, X. Jiang, X. Bai, W. Wang, Electrochromic polymers electrochemically polymerized from 2, 5-dithienylpyrrole (DTP) with different triarylamine units: synthesis, characterization and opto electrochemical properties. Electrochimica Acta 228, 332–342 (2017)

    Article  Google Scholar 

  11. Y. Rong, Z. Ku, X. Li, H. Han, Transparent bifacial dye-sensitized solar cells based on an electrochemically polymerized organic counter electrode and an iodine-free polymer gel electrolyte. J Mater Sci 50, 3803–3811 (2015)

    Article  ADS  Google Scholar 

  12. H. Yang, Q. Song, Z. Lu, C. Guo, C. Gong, W. Hu, C.M. Li, Electrochemically polymerized nanostructured poly(3.4-ethylenedioxythiophene)–poly(styrenesulfonate) buffer layer for a high performance polymer solar cell. Energy Environ Sci 3, 1580–1586 (2010)

    Article  Google Scholar 

  13. T. Akiyama, T. Fukuyama, K. Sugawa, H. Yoneda, S. Yamada, Photocurrent generation properties of electrochemically polymerized terthiophene-linked fullerene film. Synth. Met. 159, 965–968 (2009)

    Article  Google Scholar 

  14. T. Akiyama, H. Yoneda, T. Fukuyama, K. Sugawa, S. Yamada, K. Takechi, T. Shiga, T. Motohiro, H. Nakayama, K. Kohama, Facile fabrication and photocurrent generation properties of electrochemically polymerized fullerene–poly(ethylenedioxythiophene) composite films. Jpn. J. Appl. Phys. 48, 04C172 (2009)

    Google Scholar 

  15. S.P. Mali, S.A. Gosavi, A.S. Inamdar, U.M. Chougale, V.J. Fulari, Synthesis and characterizations of chemically and electrochemically polymerized polyaniline thin films for energy storage. Adv. Sci. Lett. 21, 2534–2538 (2015)

    Article  Google Scholar 

  16. J.E. Yang, I. Jang, M. Kim, S.H. Baeck, S. Hwang, S.E. Shim, Electrochemically polymerized vine-like nanostructured polyaniline on activated carbon nanofibers for supercapacitor. Electrochim. Acta 111, 136–143 (2013)

    Article  Google Scholar 

  17. Y.K. Zhang, G. Li, J. Lin, Y. Chen, Polymer aluminum electrolytic capacitors with electrochemically polymerized polypyrrole as cathode materials part II: effect of current density on electrical properties of the capacitors. 31st Symposium for Passive Components, CARTS-USA 2011, CARTS USA 2011, Jacksonville, FL, United States (2011)

  18. M. Dervisevic, E. Dervisevic, H. Azak, E. Çevik, M. Şenel, H.B. Yildiz, Novel amperometric xanthine biosensor based on xanthine oxidase immobilized on electrochemically polymerized 10-[4H-dithieno(3,2-b:2′,3′-d)pyrrole-4-yl]decane-1-amine film. Sens. Actuators Chem. 225, 181–187 (2016)

    Article  Google Scholar 

  19. A.S. Emami Meibodi, S. Haghjoo, Amperometric urea biosensor based on covalently immobilized urease on an electrochemically polymerized film of polyaniline containing MWCNTs. Synth. Met. 194, 1–6 (2014)

    Article  Google Scholar 

  20. M.S. Khubutiya, M.M. Goldin, A.A. Stepanov, V.A. Kolesnikov, S.S. Kruglikov, The effect of electrochemically polymerized pyrrole on the physicochemical properties and biological activity of carbon materials. Carbon 50, 1146–1151 (2012)

    Article  Google Scholar 

  21. R. Khan, N.C. Dey, A.K. Hazarika, K.K. Saini, M. Dhayal, Mycotoxin detection on antibody-immobilized conducting polymer-supported electrochemically polymerized acacia gum. Anal. Biochem. 410, 185–190 (2011)

    Article  Google Scholar 

  22. R. Khan, A. Kaushik, A.P. Mishra, Immobilization of cholesterol oxidase onto electrochemically polymerized film of biocompatible polyaniline-Triton X-100. Mater. Sci. Eng. C 29, 1399–1403 (2009)

    Article  Google Scholar 

  23. C. Periasamy, P. Chakrabarti, Structural and electrical properties of metal contacts on n-type ZnO thin film deposited by vacuum coating technique. J. Vac. Sci. Technol. 27, 2124–2127 (2009)

    Article  Google Scholar 

  24. S.M. Sze, Physics of Semiconductor Devices, 2nd Edn, (Wiley Eastern, New Delhi, 1981)

    Google Scholar 

  25. R. Clergereaux, I. Seguy, P. Jolinat, J. Farenc, P. Destruel, Electronic conduction in electropolymerized carbazole thin films. J. Phys. D Appl. Phys. 33, 1947–1952 (2000)

    Article  ADS  Google Scholar 

  26. L. Kong, Z. Wang, J. Zhao, J. Xu, Multi-electrochromic 2,7-linked polycarbazole derivative and its application in electrochromic devices. Int. J. Electrochem. Sci. 10, 982–996 (2015)

    Google Scholar 

  27. Y.F. Li, Y. Cao, J. Gao, D. Wang, G. Yu, A.J. Heeger, Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells. Synth. Met. 99, 243–248 (1999)

    Article  Google Scholar 

  28. P. Syed Abthagir, R. Saraswathi, Electronic properties of polyindole and polycarbazole Schottky diodes. Org. Electron. 5, 299–308 (2004)

    Article  Google Scholar 

  29. T.J. Chow, Organic Structures Design: Applications in Optical and Electronic Devices. CRC Press (2014)

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Defence Research and Development Organization (DRDO), Government of India in the form of a Research Project (Grant no. ERIP/ER/0803699/M/01/1423). The authors are thankful to the Centre for Interdisciplinary Research (CIR), Motilal Nehru National Institute of Technology Allahabad for extending the experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Chakrabarti, P. Experimental characterization of electrochemically polymerized polycarbazole film and study of its behavior with different metals contacts. Appl. Phys. A 123, 784 (2017). https://doi.org/10.1007/s00339-017-1402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1402-7

Navigation