Skip to main content
Log in

Femtosecond laser texturing of glass substrates for improved light in-coupling in thin-film photovoltaics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Due to their low thickness, thin-film solar cells usually suffer from poor light absorption. To improve this situation, light-management is necessary. Within the present work, in order to enhance light coupling, an ultra-short-pulse laser is used for texturing substrates. Here commercially available multi component soda lime glass substrates are patterned with a dot grid at ambient air pressure with 150 fs pulses, centered at a wavelength of 775 nm. The structures consist of small depressions with approximately \(3\, \upmu \hbox {m}\) diameter. Varying depths of around 300 nm could be well reproduced. Reducing the pitch (distance between structure-to-structure centers), from ten to approximately one times the crater diameter, influences the structure quality and increases the deformation of the surface in the vicinity of the depressions. Consequently, the diffuse light scattering is improved from 0 to 30% haze. Overall, the presented approach is quite simple. This single-step texturing technique which can be easily used on different substrates is applicable in a wide range of thin-film solar cells. It has the advantage that ultra-thin electrodes can be used as the front contact as well as the potential to be integrated into a PV production line. Thus, complicated layer stacks for absorption enhancement can be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Shah, J. Meier, A. Buechel, U. Kroll, J. Steinhauser, F. Meillaud, H. Schade, D. Domine, Thin Solid Films 512, 292 (2006)

    Article  ADS  Google Scholar 

  2. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. Res. Appl. 22, 701 (2014)

    Article  Google Scholar 

  3. J. Muller, B. Rech, J. Springer, M. Vanecek, Sol. Energy 77, 917 (2004)

    Article  ADS  Google Scholar 

  4. R.-E. Nowak, S. Geisendorfer, K. Chakanga, M. Juilfs, N. Reininghaus, M. Vehse, K. von Maydell, C. Agert, IEEE J. Photovolt. 5, 479 (2015)

    Article  Google Scholar 

  5. K. Chakanga, O. Siepmann, O. Sergeev, S. Geisendorfer, K. von Maydell, C. Agert, J. Photon. Energy 4, 044598 (2014)

    Article  ADS  Google Scholar 

  6. M. Boccard, C. Battaglia, S. Hanni, K. Soderstrom, J. Escarre, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, Nano Lett. 12, 1344 (2012)

    Article  ADS  Google Scholar 

  7. G. Jo, M. Choe, S. Lee, W. Park, Y.H. Kahng, T. Lee, Nanotechnology 23, 112001 (2012)

    Article  ADS  Google Scholar 

  8. M. Zeman, O. Isabella, K. Jager, R. Santbergen, S. Solntsev, M. Topic, J. Krc, Energy Procedia 15, 189 (2012)

    Article  Google Scholar 

  9. A. Hongsingthong, A. Aino, P. Sichanugrist, M. Konagai, H. Kuramochi, R. Akiike, H. Iigusa, K. Utsumi, T. Shibutami, Jpn. J. Appl. Phys. 51, 10NB09 (2012)

    Article  Google Scholar 

  10. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53, Nr 4 (1996)

    Article  Google Scholar 

  11. M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik, J. Appl. Phys. 85, Nr 9 (1999)

    Article  Google Scholar 

  12. K. Vestentoft, J.A. Olesen, B.H. Christensen, P. Balling, Appl. Phys. A 80, 493–496 (2005)

    Article  ADS  Google Scholar 

  13. L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, T. Baumert, Appl. Phys. A 92, 749–753 (2008)

    Article  ADS  Google Scholar 

  14. J. Hernandez-Rueda, N. Gotte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T.A. Ezquerra, T. Baumert, J. Solis, ACS Appl. Mater. Interfaces 7, 6613–6619 (2015)

    Article  Google Scholar 

  15. S. Zoppel, H. Huber, G.A. Reider, Appl. Phys. A 89, 161–163 (2007)

    Article  ADS  Google Scholar 

  16. S. Krause, P.T. Miclea, F. Steudel, S. Schweizer, G. Seifert, EPJ. Photovolt. 4, 40601 (2013)

    Article  ADS  Google Scholar 

  17. S. Krause, P.-T. Miclea, G. Seifert, JLMN 10, 3 (2015)

    Article  Google Scholar 

  18. B. Neuenschwander, B. Jaeggi, M. Schmida, G. Hennig, Phys. Procedia 56, 1047–1058 (2014)

    Article  ADS  Google Scholar 

  19. U. Loeschner, J. Schille, A. Streek, T. Knebel, L. Hartwig, R. Hillmann, C. Endisch, J. Laser Appl. 27, S29303 (2015)

    Article  Google Scholar 

  20. Q. Zhou, W. Yang, F. He, R. Stoian, R. Hui, G. Cheng, OSA 21(8), 9851–9861 (2013)

    Google Scholar 

  21. C.R. Phipps, Laser Ablation and its Applications (Springer, Berlin, 2007)

    Book  Google Scholar 

  22. B.K. Nayak, M.C. Gupta, Appl. Phys. A 89, 663–666 (2007)

    Article  ADS  Google Scholar 

  23. M. Shen, J.E. Carey, C.H. Crouch, M. Kandyla, H.A. Stone, E. Mazur, Nano Lett. 8(7), 2087–2091 (2008)

    Article  ADS  Google Scholar 

  24. V.V. Iyengar, B.K. Nayak, M.C. Gupta, Solar Energy Mater. Solar Cells 94, 2251–2257 (2010)

    Article  Google Scholar 

  25. A.Y. Vorobyev, C. Guo, Appl. Surf. Sci. 257, 7291–7294 (2011)

    Article  ADS  Google Scholar 

  26. X. Zhang, H. Liu, X. Huang, H. Jiang, J. Mater. Chem. C 3, 3336 (2015)

    Article  Google Scholar 

  27. J. Lacombe, O. Sergeev, K. Chakanga, K. von Maydell, C. Agert, J. Appl. Phys. 110, 023102 (2011)

    Article  ADS  Google Scholar 

  28. J. Rao, S. Varlamov, Energy Procedia 33, 129–136 (2013)

    Article  Google Scholar 

  29. O. Isabella, S. Solntsev, D. Caratelli, M. Zeman, Prog. Photovolt. Res. Appl. 21, 94–108 (2013)

    Article  Google Scholar 

  30. J. Imgrunt: Bachelor thesis, Hochschule Emden/Leer (2015)

  31. S. Martin: PhD Thesis, Freien Universität Berlin (2004)

  32. L. Jiang, H.-L. Tsai, J. Appl. Phys. 104, 093101 (2008)

    Article  ADS  Google Scholar 

  33. A. Ben-Yakar, R.L. Byer, J. Appl. Phys. 96, 5316 (2004)

    Article  ADS  Google Scholar 

  34. A. Ben-Yakara, R.L. Byer, A. Harkin, J. Ashmore, H.A. Stone, M. Shen, E. Mazur, Appl. Phys. Lett. 83, 3030 (2003)

    Article  ADS  Google Scholar 

  35. T. Rother, Scattering as a Boundary Value Problem (Springer, Berlin, 2009)

    Book  Google Scholar 

  36. J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama, M. Kambe, T. Matsui, H. Sai, M. Kondo, M. Topic, Thin Solid Films 518, 3054–3058 (2010)

    Article  ADS  Google Scholar 

  37. M. Boccard, C. Battaglia, S. Hanni, K. Soderstrom, J. Escarre, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, Nano Lett. 12, 1344–1348 (2012)

    Article  ADS  Google Scholar 

  38. S. Neubert, S. Ring, F. Welker, S. Gtzendrfer, F. Ruske, B. Stannowski, R. Schlatmann, B. Rech, Phys. Status Solidi RRL 8(1), 44–47 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank V. Braun for the support with station assembly, V. Steenhoff for fruitful discussions and O. Sergeev for cell depositions. The authors would like also thank G. Kane for critical reading the manuscript. This work has been supported by the Research Committee of the University of Applied Sciences Emden/Leer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Teubner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imgrunt, J., Chakanga, K., von Maydell, K. et al. Femtosecond laser texturing of glass substrates for improved light in-coupling in thin-film photovoltaics. Appl. Phys. A 123, 776 (2017). https://doi.org/10.1007/s00339-017-1381-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1381-8

Navigation