Skip to main content
Log in

Phase, microstructural analysis, and humidity-sensing properties of orange dye and cuprous-oxide composite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of humidity on the phase, microstructure, and electrical properties of an organic compound orange dye (C17H17N5O2) and cuprous-oxide (Cu2O) micro-composite thin film has been investigated. 5 wt% commercially available orange dye and 30–40 wt% Cu2O were used to prepare an aqueous solution. The solution was layered in the form of a thin film on a pre-deposited copper glass substrate using a drop-casting technique under normal gravity conditions. A gap was made in the middle of the surface to get ohmic type electrodes at the ends of the glass substrate. In this way, a Cu/Cu2O–OD/Cu humidity sensor was fabricated. A self-made setup was used to carry out the experiment. Impedance of these samples was observed to decrease by 57–84 times and capacitance increased by 20–26 times with an increase in humidity from 62 to 98% RH. These observations demonstrated that impedance was more sensitive to the variations in humidity as compared to capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q. Weng, S. Yang, Urban air pollution patterns, land use, and thermal landscape: An examination of the linkage using GIS. Environ. Monit. Assess 117, 463–489 (2006)

    Article  Google Scholar 

  2. Z.M. Rittersma, Recent achievements in miniaturised humidity sensors—a review of transduction techniques. Sensor. Actuat. A-Phys 96, 196–210 (2002)

    Article  Google Scholar 

  3. J. Joyce, B. Adamson, T. Huntley, R. Parr, Baxter, Standardisation of temperature observed by automatic weather stations. Environ. Monit. Assess 68, 127–136 (2001)

    Article  Google Scholar 

  4. Y. Anjaneyulu, I. Jayakumar, V.H. Bindu, P.V.M. Rao, G. Sagareswar, K.V. Ramani, Real-time remote monitoring of air pollutants and their online transmission to the web using internet protocol. Environ. Monit. Assess 124, 371–381 (2007)

    Article  Google Scholar 

  5. C.Y. Lee, G.B. Lee, Humidity sensors: A review. Sens. Lett. 3, 1–15 (2005)

    Article  ADS  Google Scholar 

  6. Z. Chen, C. Lu, Humidity sensors: A review of materials and mechanisms. Sens. Lett. 3, 274–295 (2005)

    Article  ADS  Google Scholar 

  7. K.S. Karimov, M. Saleem, Z.M. Karieva, A. Mateen, M.T.S. Chani, Q. Zafar, Humidity sensing properties of Cu2O-PEPC nanocomposite films. J. Semicond 33, 073001 (2012)

    Article  ADS  Google Scholar 

  8. J. Korvink, L. Chandran, Accurate 3D capacitance evaluation in integrated capacitive humidity sensors. Sensors Mater 4, 323–323 (1993)

    Google Scholar 

  9. S. Park, J. Kang, J. Park, S. Mun, One-bodied humidity and temperature sensor having advanced linearity at low and high relative humidity range. Sensor Actuat. B 76, 322–326 (2001)

    Article  Google Scholar 

  10. K.C. Brion, Moisture sensors in process control. (Elsevier Applied Science Publishers, USA, 1986)

    Google Scholar 

  11. M. Matsuguchi, Y. Sadaoka, K. Nosaka, M. Ishibashi, Y. Sakai, T. Kuroiwa, A. Ito, Effect of sorbed water on the dielectric properties of Acetylene-Terminated Polyimide resins and their application to a humidity sensor. J. Elctrochem. Soc 140, 825–829 (1993)

    Article  Google Scholar 

  12. K.S. Karimov, I. Qazi, T.A. Khan, P.H. Draper, F.A. Khalid, M.M. Tahir, Humidity and illumination organic semiconductor copper phthalocyanine sensor for environmental monitoring. Environ. Monit. Assess 141, 323–328 (2008)

    Article  Google Scholar 

  13. A.O. Musa, T. Akomolafe, M.J. Carter, Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties. Sol. Energ. Mat. Sol. C 51, 305–316 (1998)

    Article  Google Scholar 

  14. M.T.S. Nair, L. Guerrero, O.L. Arenas, P.K. Nair, Chemically deposited copper oxide thin films: structural, optical and electrical characteristics. Appl. Surf. Sci 150, 143–151 (1991)

    Article  ADS  Google Scholar 

  15. H. Zhang, D.M. Goodner, M.J. Bedzyk, T.J. Marks, R.P.H. Chang, Formation and kinetics study of cuprous oxide nanodots on LaAlO3 (0 0 1). Chem. Phys. Lett. 395, 296–301 (2004)

    Article  ADS  Google Scholar 

  16. N.M. Shanid, M.A. Khadar, Evolution of nanostructure, phase transition and band gap tailoring in oxidized Cu thin films.. Thin Solid Films 516, 6245–6252 (2008)

    Article  ADS  Google Scholar 

  17. D.U. Kim, M.S. Gong, Thick films of copper-titanate resistive humidity sensor. Sensor Actuat. B 110, 321–326 (2005)

    Article  Google Scholar 

  18. P. Slezak, A. Wieckowski, Aqueous electrochemical synthesis of YBa2Cu3O7 – x superconductors. J. Electrochem. Soc 138, 1038–1040 (1991)

    Article  Google Scholar 

  19. K.S. Karimov, M. Abid, M. Saleem, M. Farooq, Z.M. Karieva, A. Khan, Cu2O–PEPC composite based pressure transducer. Arab J. Sci. Eng 37, 1491–1498 (2012)

    Article  Google Scholar 

  20. S.B. Abolmaali, J.B. Talbot, Synthesis of superconductive thin films of YBa2Cu3O7–x by a Nonaqueous Electrodeposition Process. J. Electrochem. Soc 140, 443–445 (1993)

    Article  Google Scholar 

  21. T. Mahalingam, C. Sanjeeviraja, Galvanostatic deposition of Cu2O layers through the electrogeneration of base route. J. Mater. Sci. Lett 17, 603–605 (1998)

    Article  Google Scholar 

  22. F.N. Meng, X.P. Di, H.W. Dong, Y. Zhang, C.L. Zhu, C. Li, Y.J. Chen, Ppb H2S gas sensing characteristics of Cu2O/CuO sub-microspheres at low-temperature. Sensor Actuat. B 182, 197–204 (2013)

    Article  Google Scholar 

  23. S.A. Moiz, K.S. Karimov, N.D. Gohar, Orange dye thin film resistive hygrometers. Eurasian Chem. Tech. J 6, 179–183 (2004)

    Article  Google Scholar 

  24. K.S. Karimov, M. Abid, M.M. Tahir, M. Saleem, A. Khan, Z.M. Karieva, M. Farooq, V2O4–PEPC composite based pressure sensor. Microelectron. Eng 88, 1037–1041 (2011)

    Article  Google Scholar 

  25. R.L. Boylestad, Introductory circuit analysis, 12th edn., Pearson Education India (2000)

  26. J.D. Irwin, Basic engineering circuit analysis, 6th edn. (Wiley, New York, 1999)

    Google Scholar 

  27. M.A. Omar, Elementary Solid State Physics: Principles and Applications. (Pearson Education Pte Ltd, Singapore, 2002)

    Google Scholar 

  28. S.N. Boguslavsky, V.V. Vannikov, Organic Semiconductors, V.A. Kargin, (Nauka, Moscow, 1968)

  29. C.L. Hsu, J.Y. Tsai, T.J. Hsueh, Ethanol gas and humidity sensors of CuO/Cu2O composite nanowires based on a Cu through-silicon via approach. Sensors Actuat. B 224, 95–102 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the authority of GIK Institute for the support of research in the area of organic semiconductor and devices fabrication and investigations. The authors also acknowledge the financial support (ADP No. 130314) extended by the KPK Govt. through DoST, KPK for the Materials Research Laboratory, University of Peshawar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Saleem.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimov, K.S., Saleem, M., Iqbal, Y. et al. Phase, microstructural analysis, and humidity-sensing properties of orange dye and cuprous-oxide composite. Appl. Phys. A 123, 740 (2017). https://doi.org/10.1007/s00339-017-1343-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1343-1

Navigation