Skip to main content
Log in

Effects of surface condition on the work function and valence-band position of ZnSnN2

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnSnN2 is an emerging wide band gap earth-abundant semiconductor with potential applications in photonic devices such as solar cells, LEDs, and optical sensors. We report the characterization by ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy of reactively radio-frequency sputtered II–IV-nitride ZnSnN2 thin films. For samples transferred in high vacuum, the ZnSnN2 surface work function was 4.0 ± 0.1 eV below the vacuum level, with a valence-band onset of 1.2 ± 0.1 eV below the Fermi level. The resulting band diagram indicates that the degenerate bulk Fermi level position in ZnSnN2 shifts to mid-gap at the surface due to band bending that results from equilibration with delocalized surface states within the gap. Brief (< 10 s) exposures to air, a nitrogen-plasma treatment, or argon-ion sputtering caused significant chemical changes at the surface, both in surface composition and interfacial energetics. The relative band positioning of the n-type semiconductor against standard redox potentials indicated that ZnSnN2 has an appropriate energy band alignment for use as a photoanode to effect the oxygen-evolution reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Adapted with permission from Ref. [49]

Similar content being viewed by others

References

  1. L. Lahourcade, N. Coronel, K. Delaney, S.K. Shukla, N.A. Spaldin, H.A. Atwater, Adv. Mater. 25, 2562 (2013)

    Google Scholar 

  2. P. Quayle, K. He, J. Shan, K. Kash, MRS Commun. 3, 135 (2013)

    Google Scholar 

  3. N. Feldberg, J.D. Aldous, W.M. Linhart, L.J. Phillips, K. Durose, P.A. Stampe, R.J. Kennedy, D.O. Scanlon, G. Vardar, R.L. Field III, T.Y. Jen, R.S. Goldman, T.D. Veal, S.M. Durbin, Appl. Phys. Lett. 103, 042109 (2013)

    ADS  Google Scholar 

  4. K.T. Delaney, S.K. Shukla, N.A. Spaldin, in First-Principles Theoretical Assessment of Earth-Abundant Nitrides for Photovoltaic and Optoelectronic Applications using Hybrid Density Functionals

  5. A. Punya, W.R.L. Lambrecht, Phys. Rev. B 84, 165204 (2011)

    ADS  Google Scholar 

  6. A. Punya, T.R. Paudel, W.R.L. Lambrecht, Phys. Status Solid C 8, 2492 (2011)

    Google Scholar 

  7. A. Punya, W.R.L. Lambrecht, Phys. Rev. B 88, 075302 (2013)

    ADS  Google Scholar 

  8. A.M. Shing, N.C. Coronel, N.S. Lewis, H.A. Atwater, APL Mater. 3, 076104 (2015)

    ADS  Google Scholar 

  9. N.C. Coronel, L. Lahourcade, K.T. Delaney, A.M. Shing, H.A. Atwater, Proc. 38th IEEE PVSC, p. 003204 (2012)

  10. T.D. Veal, N. Feldberg, N.F. Quackenbush, W.M. Linhart, D.O. Scanlon, L.F.J. Piper, S.M. Durbin, Adv. Energy Mater. 5, 1501462 (2015)

    Google Scholar 

  11. N. Feldberg, J.D. Aldous, P.A. Stampe, R.J. Kennedy, T.D. Veal, S.M. Durbin, J. Electron. Mater. 43(4), 884 (2014)

    ADS  Google Scholar 

  12. N. Senabulya, N. Feldberg, R.A. Makin, Y. Yang, G. Shi, C.M. Jones, E. Kioupakis, J. Mathis, R. Clarke, S.M. Durbin, AIP Adv. 6, 075019 (2016)

    ADS  Google Scholar 

  13. C.H. Kuo, K.S. Chang, Cryst. Growth Des. 17(9), 4696–4702 (2017)

    Google Scholar 

  14. A.N. Fioretti, A. Stokes, M.R. Young, B. Groman, E.S. Toberer, A.C. Tamboli, A. Zakutayev, Adv. Electron. Mater. 3, 1600544 (2015)

    Google Scholar 

  15. R.L. Anderson, Solid State Electron. 5, 341 (1962)

    ADS  Google Scholar 

  16. A.G. Milnes, D.L. Feucht, Heterojunctions and Metal Semiconductor Junctions (Academic Press, New York, 1972)

    Google Scholar 

  17. M.J. Adams, A. Nussbaum, Solid State Electron. 22, 783–791 (1979)

    ADS  Google Scholar 

  18. A. Kudo, Y. Miseki, Chem. Soc. Rev. 38, 253–278 (2009)

    Google Scholar 

  19. L. Yang, H. Zhou, T. Fan, D. Zhang, Phys. Chem. Chem. Phys. 16, 6810–6826 (2014)

    Google Scholar 

  20. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q.X. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110, 6446–6473 (2010)

    Google Scholar 

  21. R. Schlaf, H. Murata, Z.H. Kafafi, J. Electron Spectrosc. Relat. Phenom. 120, 149–154 (2001)

    Google Scholar 

  22. M. Schulz, E. Klausmann, A. Hurrle, CRC Crit. Rev. Solid State Sci. 5(3), 319–325 (1975)

    Google Scholar 

  23. C.T. Au, W. Hirsch, W. Hirschwald, Surf. Sci. 197(3), 391–401 (1988)

    ADS  Google Scholar 

  24. F. Streicher, S. Sadewasser, M.C. Lux-Steiner, Rev. Sci. Instrum. 80, 013907 (2009)

    ADS  Google Scholar 

  25. G.V. Hansson, R.I.G. Uhrberg, Surf. Sci. Rep. 9, 197–292 (1988)

    ADS  Google Scholar 

  26. P.T. Andrews, L.A. Hisscott, J. Phys. F Met. Phys. 5, 1568–1572 (1975)

    ADS  Google Scholar 

  27. J. Kubota, K. Domen, ECS Interface 24(2), 57–62 (2013)

    Google Scholar 

  28. T. Sahm, A. Gurlo, N. Barsan, U. Weimar, Sens. Actuators B 118, 78–83 (2006)

    Google Scholar 

  29. C.A. Dearden, M. Walker, N. Beaumont, I. Hancox, N.K. Unsworth, P. Sullivan, C.F. McConville, T.S. Jones, Phys. Chem. Chem. Phys. 16, 18926–18932 (2014)

    Google Scholar 

  30. A. Fuchs, H.J. Schimper, A. Klein, W. Jaegermann, Energy Proc. 10, 149–154 (2011)

    Google Scholar 

  31. K. Burger, F. Tschismarov, H. Ebel, J. Electron Spectrosc. Relat. Phenom. 10, 461 (1977)

    Google Scholar 

  32. Positions of photoelectron and auger lines on the binding energy scale (Al X-rays) (XPS International LLC, 2017). http://www.xpsdata.com/XI_BE_table.htm. Accessed 06 Dec 1999

  33. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Line positions from Al X-rays in numerical order, in Handbook of X-ray Photoelectron Spectroscopy, 1st edn, (Perkin-Elmer Corporation Physical Electronics, 1979), p. 187 (Table 4)

  34. X. Bai, W. Jie, G. Zha, W. Zhang, P. Li, H. Hua, L. Fu, Appl. Surf. Sci. 255(18), 7966 (2009)

    ADS  Google Scholar 

  35. B. Conings, L. Baeten, C.D. Dobbelaere, J. D’Haen, J. Manca, H.G. Boyen, Adv. Mater. 26(13), 2041–2046 (2014)

    Google Scholar 

  36. F. Vaz, N. Martin, M. Fenker, Metallic Oxynitride Thin Films by Reactive Sputtering and Related Deposition Methods (Bentham Science Publishers, Sharjah, 2013)

    Google Scholar 

  37. H. Moormann, D. Kohl, G. Heiland, Surf. Sci. 80, 261–264 (1979)

    ADS  Google Scholar 

  38. K. Jacobi, G. Zwicker, A. Gutmann, Surf. Sci. 141(1), 109–125 (1984)

    ADS  Google Scholar 

  39. M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47–154 (2005)

    ADS  Google Scholar 

  40. V.I. Nefedov, I.A. Zakharova, I.I. Moiseev, M.A. Porai-koshits, M.N. Vargoftik, A.P. Belov, Zh. Neorg. Khimil 18, 3264 (1973)

    Google Scholar 

  41. D.E. Eastman, J.K. Cashion, Phys. Rev. Lett. 24(7), 310–313 (1970)

    ADS  Google Scholar 

  42. C.M. Eggleston, J.J. Ehrhardt, W. Stumm, Am. Miner. 81, 1036–1056 (1996)

    ADS  Google Scholar 

  43. J.L. Freeouf, D.E. Eastman, CRC Crit. Rev. Solid State Sci. 5(3), 245–258 (1975)

    Google Scholar 

  44. K. Nomura, T. Kamiya, E. Ikenaga, H. Yanagi, K. Kobayashi, H. Hosono, J. Appl. Phys. 109, 073726 (2011)

    ADS  Google Scholar 

  45. T.E. Fischer, Surf. Sci. 13(1), 30–51 (1969)

    ADS  Google Scholar 

  46. L.F. Wagner, W.E. Spicer, Phys. Rev. Lett. 28(21), 1381–1384 (1972)

    ADS  Google Scholar 

  47. J.N. Miller, I. Lindau, W.E. Spicer, Philos. Mag. B 43(2), 273–282 (1981)

    ADS  Google Scholar 

  48. D.R. Palmer, S.R. Morrison, C.E. Dauenbaugh, Phys. Rev. 129(2), 608–613 (1963)

    ADS  Google Scholar 

  49. A.J. Nozik, R. Memming, J. Phys. Chem. 100(31), 13061–13078 (1996)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the Dow Chemical Company under the earth-abundant semiconductor project. We also acknowledge the Joint Center for Artificial Photosynthesis and the Molecular Materials Research Center of the Beckman Institute at Caltech for instrument access. The authors thank Bruce Brunschwig and Kimberly Papadantonakis for guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda M. Shing.

Ethics declarations

Funding sources

Dow Chemical Company, Caltech Molecular Materials Research Center.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 603 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shing, A.M., Tolstova, Y., Lewis, N.S. et al. Effects of surface condition on the work function and valence-band position of ZnSnN2 . Appl. Phys. A 123, 735 (2017). https://doi.org/10.1007/s00339-017-1341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1341-3

Navigation