Skip to main content
Log in

Microstructure and magnetic properties of Zr–Mn substituted M-type SrLa hexaferrites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, we have synthesized the M-type SrLa hexaferrites with nominal compositions of Sr0.75La0.25Fe12.0−2x (ZrMn) x O19 (0.0 ≤ x ≤ 0.75) by the solid-state method techniques. The phase compositions of the samples were confirmed by X-ray diffraction analysis. X-ray diffraction analysis exhibits that all the synthesized M-type hexaferrite magnetic powders are in single magetoplumbite structure and no impurity phase is observed, and with the increase of ZrMn content (x), (107) and (114) peaks are broadened and the 2θ values of (107) and (114) peaks shift towards lower angles. It is observed that lattice constants (c and a) increase with increasing ZrMn content (x) from 0.00 to 0.75. The morphology of the M-type hexaferrites was characterized by a field emission scanning electron microscopy (FE-SEM). FE-SEM images show that the M-type hexaferrite have formed hexagonal structures. Magnetization properties were measured at room temperature using a physical property measurement system-vibrating sample magnetometer. The saturation magnetization (M s), remanent magnetization (M r) and coercivity (H c) are calculated from magnetic hysteresis loops. M s, M r and M r/M s ratio first increase with increasing ZrMn content (x) from 0.00 to 0.15, and then decrease when ZrMn content (x) ≥0.15. H c decreases with the increase of ZrMn content (x) from 0.00 to 0.75.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Qiang, Y. Jin, X.W. Lu, X.P. Cui, D.M. Deng, B.J. Kang, W.G. Yang, S.X. Cao, J.C. Zhang, Temperature effect on the magnetic property and ferroelectricity in hexaferrite SrFe12O19. Appl. Phys. A 122, 681 (2016)

    Article  ADS  Google Scholar 

  2. B.H. Bhat, B. Want, Magnetic behaviour of neodymium-substituted strontium hexaferrite. Appl. Phys. A 122, 148 (2016)

    Article  ADS  Google Scholar 

  3. L.N. Pan, F.M. Gu, D.R. Cao, P.P. Jing, J.N. Li, J.B. Wang, Q.F. Liu, Elevtrospun Dy-doped SrFe12O19 nanofibers: microstructure and magnetic properties. Appl. Phys. A 122, 583 (2016)

    Article  ADS  Google Scholar 

  4. S. Ounnunkad, P. Winotai, S. Phanichphant, Effect of La doping on magnetic and microstructural properties of Ba1−x La x Fe12O19 ceramics prepared by citrate combustion process. J. Electroceram. 16, 357–361 (2006)

    Article  Google Scholar 

  5. J.F. Wang, C.B. Ponton, I.R. Harris, A study of Nd-substituted Sr hexaferrite prepared by hydrothermal synthesis. IEEE Trans. Magn. 38, 2928–2930 (2002)

    Article  ADS  Google Scholar 

  6. H.Z. Wang, B. Yao, Y. Xu, Q. He, G.H. Wen, S.W. Lang, J. Fan, G.D. Li, L. Shan, B. Liu, L.N. Jiang, L.L. Gao, Improvement of the coercivity of strontium hexaferrite induced by substitution of Al3+ ions for Fe3+ ions. J. Alloys Compd. 537, 43–49 (2012)

    Article  Google Scholar 

  7. V.C. Chavan, S.E. Shirsath, M.L. Mane, R.H. Kadam, S.S. More, Transformation of hexagonal to mixed spinel crystal structure and magnetic properties of Co2+ substituted BaFe12O19. J. Magn. Magn. Mater. 398, 32–37 (2016)

    Article  ADS  Google Scholar 

  8. P. Sharma, R.A. Rocha, S.N. de Medeiros, B. Hallouche, A. Paesano Jr., Structural and magnetic studies on mechanosynthesized BaFe12−x Mn x O19. J. Magn. Magn. Mater. 316, 29–33 (2007)

    Article  ADS  Google Scholar 

  9. W.C. Li, X.J. Qiao, M.Y. Li, T. Liu, H.X. Peng, La and Co substituted M-type barium ferrites processed by sol–gel combustion synthesis. Mater. Res. Bull. 48, 4449–4453 (2013)

    Article  Google Scholar 

  10. L. Peng, L.Z. Li, X.X. Li, Y. Hu, X.Q. Tu, R. Wang, Magnetic, electric, and dielectric properties of La–Cu substituted Sr-hexaferrites for use in microwave LTCC devices. J. Alloys Compd. 665, 31–36 (2016)

    Article  Google Scholar 

  11. J.M. Bai, X.X. Liu, T. Xie, F.L. Wei, Z. Yang, The effects of La–Zn substitution on the magnetic properties of Sr-magnetoplumbite ferrite nano-particles. Mater. Sci. Eng. B 68, 182–185 (2000)

    Article  Google Scholar 

  12. A.L. Xia, D.X. Du, P.P. Li, Y.X. Sun, Crystalline structures and intrinsic magnetic properties of ZnTi-substituted M-type Ba ferrite powder. J. Mater. Sci. Mater. Electron. 22, 223–227 (2011)

    Article  Google Scholar 

  13. S.K. Chawla, S.S. Meena, P. Kaur, P.K. Mudsainiyan, S.M. Yusuf, Effect of site preferences on structural and magnetic switching properties of Co–Zr doped strontium hexaferrite SrCo x Zr x Fe(12−2x)O19. J. Magn. Magn. Mater. 378, 84–91 (2015)

    Article  ADS  Google Scholar 

  14. S. Alamolhoda, S.M. Mirkazemi, Z. Ghiami, M. Niyaifar, Structure and magnetic properties of Zr–Mn substituted strontium hexaferrite Sr(Zr, Mn) x Fe12−2x O19 nanoparticles synthesized by sol-gel auto-combustion method. Bull. Mater. Sci. 39, 1311–1318 (2016)

    Article  Google Scholar 

  15. M.J. Iqbal, M.N. Ashiq, P. Hernández-Gómez, J.M.M. Muñoz, C.T. Cabrera, Influence of annealing temperature and doping rate on the magnetic properties of Zr–Mn substituted Sr-hexaferrite nanoparticles. J. Alloys Compd. 500, 113–116 (2010)

    Article  Google Scholar 

  16. A. Ghasemi, Magnetic properties of substituted strontium ferrite nanoparticles and thin films. J. Magn. Magn. Mater. 324, 1375–1380 (2012)

    Article  ADS  Google Scholar 

  17. Y.J. Yang, J.X. Shao, F.H. Wang, X.S. Liu, D.H. Huang, Impacts of MnZn doping on the structural and magnetic properties of M-type SrCaLa hexaferrites. Appl. Phys. A 123, 309 (2017)

    Article  ADS  Google Scholar 

  18. A. Thakur, R.R. Singh, P.B. Barman, Synthesis and characterizations of Nd3+ doped SrFe12O19 nanoparticles. Mater. Chem. Phys. 141, 562–569 (2013)

    Article  Google Scholar 

  19. T. Kaur, S. Kumar, B.H. Bhat, B. Want, A.K. Srivastava, S.X. Cao, J.C. Zhang, Effect on dielectric, magnetic, optical and structural properties of Nd–Co substituted barium hexaferrite nanoparticles. Appl. Phys. A 119, 1531–1540 (2015)

    Article  ADS  Google Scholar 

  20. M.J. Iqbal, M.N. Ashiq, I.H. Gul, Physical, electrical and dielectric properties of Ca-substituted strontium hexaferrite (SrFe12O19) nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 322, 1720–1726 (2010)

    Article  ADS  Google Scholar 

  21. L. Zhao, X.X. Lv, Y.S. Wei, C. Ma, L.J. Zhao, Hydrothermal synthesis of pure BaFe12O19 hexaferrite nanoplatelets under high alkaline system. J. Magn. Magn. Mater. 332, 44–47 (2013)

    Article  ADS  Google Scholar 

  22. Y.J. Yang, X.S. Liu, D.L. Jin, Y.Q. Ma, Structural and magnetic properties of La–Co substituted Sr–Ca hexaferrites synthesized by the solid state reaction method. Mater. Res. Bull. 59, 37–41 (2014)

    Article  Google Scholar 

  23. J. Li, H.W. Zhang, Q. Li, Y.X. Li, Q.L. Yu, Influence of La–Co substitution on the structure and magnetic properties of low-temperature sintered M-type barium ferrites. J. Rare Earths 31, 983–987 (2013)

    Article  Google Scholar 

  24. I. Khan, I. Sadiq, I. Ali, M.-U.-D. Rana, M. Najam-Ul-Haq, A. Shah, I. Shakir, M.N. Ashiq, Structural, electrical and magnetic study of Nd–Ni substituted strontium W-type hexaferrite. J. Magn. Magn. Mater. 397, 6–10 (2016)

    Article  ADS  Google Scholar 

  25. X.F. Meng, Y.K. Ji, Effect of chemical composition and heat treatment condition on microstructure and magnetic properties of nanocrystalline BaDy x Fe12−x O19 (x = 0.1, 0.2, 0.3, 0.4) microfibers. J. Sol Gel. Sci. Technol. 67, 18–28 (2013)

    Article  Google Scholar 

  26. M.H. Shams, A.S.H. Rozatian, M.H. Yousefi, J. Valíček, V. Šepelák, Effect of Mg2+ and Ti4+ dopants on the structural, magnetic and high-frequency ferromagnetic properties of barium hexaferrite. J. Magn. Magn. Mater. 399, 10–18 (2016)

    Article  ADS  Google Scholar 

  27. R.R. Bhosale, R.S. Barkule, D.R. Shengule, K.M. Jadhav, Synthesis, structural, electrical and dielectric properties of Zn–Zr doped strontium hexaferrite nanoparticles. J. Mater. Sci. Mater. Electron. 24, 3101–3107 (2013)

    Article  Google Scholar 

  28. R.S. Alam, M. Moradi, M. Rostami, H. Nikmanesh, R. Moayedi, Y. Bai, Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 381, 1–9 (2015)

    Article  ADS  Google Scholar 

  29. L. Lechevallier, J.M. Le Breton, J.F. Wang, I.R. Harris, Structural analysis of hydrothermally synthesized Sr1−x Sm x Fe12O19 hexagonal ferrites. J. Magn. Magn. Mater. 269, 192–196 (2004)

    Article  ADS  Google Scholar 

  30. E. Kiani, A.S.H. Rozatian, M.H. Yousefi, Structural, magnetic and microwave absorption properties of SrFe12−2x (Mn0.5Cd0.5Zr) x O19 ferrite. J. Magn. Magn. Mater. 361, 25–29 (2014)

    Article  ADS  Google Scholar 

  31. M.V. Rane, D. Bahadur, A.K. Nigam, C.M. Srivastava, Mössbauer and FT-IR studies on non-stoichiometric barium hexaferrites. J. Magn. Magn. Mater. 192, 288–296 (1999)

    Article  ADS  Google Scholar 

  32. X. Battle, X. Obradors, J. Rodríguez-Carvajal, M. Pernet, M.V. Cabañas, M. Vallet, Cation distribution and intrinsic magnetic properties of Co–Ti-doped M-type barium ferrite. J. Appl. Phys. 70, 1614–1623 (1991)

    Article  ADS  Google Scholar 

  33. S.Y. An, I.-B. Shim, C.S. Kim, Mössbauer and magnetic properties of Co–Ti substituted barium hexaferrite nanoparticles. J. Appl. Phys. 91, 8465–8467 (2002)

    Article  ADS  Google Scholar 

  34. Z. Yang, C.S. Wang, X.H. Li, H.X. Zeng, (Zn, Ni, Ti) substituted barium ferrite particles with improved temperature coefficient of coercivity. Mater. Sci. Eng., B 90, 142–145 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Fund of SiChuan Provincial Education Department (No. 13ZA0918, No. 14ZA0267 and No. 16ZA0330), the Major Project of Yibin City of China (No. 2012SF034 and No. 2016GY025), Scientific Research Key Project of Yibin University (No. 2015QD13) and the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University (No. JSWL2015KFZ04). The Author K.M. Batoo is thankful to King Abdullah Institute For Nanotechnology, Deanship and Scientific Research, King Saud University for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujie Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, F., Shao, J. et al. Microstructure and magnetic properties of Zr–Mn substituted M-type SrLa hexaferrites. Appl. Phys. A 123, 568 (2017). https://doi.org/10.1007/s00339-017-1182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1182-0

Navigation