Skip to main content
Log in

Absorption property of C@CIPs composites by the mechanical milling process

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The C@CIPs absorbents were fabricated by the mechanical milling method. The particle morphology and crystal grain structure were characterized by the scanning electron microscopy and the X-ray diffraction patterns, respectively. The complex permittivity and permeability of the absorbing composites added the hybrid particles were tested in 2–18 GHz. The reflection loss (RL) and shielding effectiveness were calculated using the tested parameters. It was found that the MWCNTs were bonded to the CIPs surface. The permittivity and permeability of the C@CIPs were increased as the MWCNTs coated on the CIPs. It was attributed to the dielectric property of MWCNTs, particle shape and the interactions of the two particles according to the Debye equation and the Maxwell–Garnett mixing rule. The C@CIPs composites had a better absorbing property as RL < −4 dB in 4.6–17 GHz with thickness 0.6 mm as well as shielding property (maximum 12.7 dB) in 2–18 GHz. It indicated that C@CIPs might be an effective absorbing/shielding absorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.E. Lee, W.J. Lee, K.S. Oh et al., Broadband all fiber-reinforced composite radar absorbing structure integrated by inductive frequency selective carbon fiber fabric and carbon-nanotube-loaded glass fabrics. Carbon 107, 564–572 (2016)

    Article  Google Scholar 

  2. X. Yuan, L. Cheng, L. Zhang, Electromagnetic wave absorbing properties of SiC/SiO2, composites with ordered inter-filled structure. J. Alloy. Compd. 680, 604–611 (2016)

    Article  Google Scholar 

  3. I. Choi, D. Lee, G.L. Dai, Optimum design method of a nano-composite radar absorbing structure considering dielectric properties in the X-band frequency range. Compos. Struct. 119, 218–226 (2015)

    Article  Google Scholar 

  4. Y.W. Nam, J.H. Choi, W.J. Lee et al., Thin and lightweight radar-absorbing structure containing glass fabric coated with silver by sputtering. Compos. Struct. 160, 1171–1177 (2017)

    Article  Google Scholar 

  5. H. Zhao, Z. Zhu, C. Xiong et al., The effect of transverse magnetic field treatment on wave-absorbing properties of FeNi alloy powders. J. Magn. Magn. Mater. 422, 402–406 (2016)

    Article  ADS  Google Scholar 

  6. H. Wang, D. Zhu, W. Zhou et al., Electromagnetic and microwave absorbing properties of polyimide nanocomposites at elevated temperature. J. Alloy. Compd. 648, 313–319 (2015)

    Article  Google Scholar 

  7. I.W. Nam, H.K. Lee, Synergistic effect of MWNT/fly ash incorporation on the EMI shielding/absorbing characteristics of cementitious materials. Constr. Build. Mater. 115, 651–661 (2016)

    Article  Google Scholar 

  8. X. Gao, J. Li, Y. Gao et al., Microwave absorbing properties of alternating multilayer composites consisting of poly(vinyl chloride) and multi-walled carbon nanotube filled poly(vinyl chloride) layers. Compos. Sci. Technol. 130, 10–19 (2016)

    Article  Google Scholar 

  9. J. Feng, Y. Zhang, P. Wang et al., Oblique incidence performance of radar absorbing honeycombs. Compos. B Eng. 99, 465–471 (2016)

    Article  Google Scholar 

  10. L.D. Liu, Y.P. Duan, S.H. Liu, L.Y. Chen, J.B. Guo, Microwave absorbing properties of one thin sheet employing carbonyl-iron powder and chlorinated polyethylene. J. Magn. Magn. Mater. 322, 1736–1740 (2010)

    Article  ADS  Google Scholar 

  11. H. Wang, D. Zhu, W. Zhou, F. Luo, Electromagnetic property of SiO2-coated carbonyl iron/polyimide composites as heat resistant microwave absorbing materials. J. Magn. Magn. Mater. 375, 111–116 (2015)

    Article  ADS  Google Scholar 

  12. Y. Xu, Z. Yan, D. Zhang, Microwave absorbing property of a hybrid absorbent with carbonyl irons coating on the graphite. Appl. Surf. Sci. 356, 1032–1038 (2015)

    Article  ADS  Google Scholar 

  13. R.C. Che, C.Y. Zhi, C.Y. Liang, X.G. Zhou, Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 88(3), 033105 (2006)

    Article  ADS  Google Scholar 

  14. A.P. Shpak, S.P. Kolesnik, G.S. Mogilny, Y.N. Petrov, V.P. Sokhatsky, L.N. Trophimova et al., Structure and magnetic properties of iron nanowires encased in multi-walled carbon nanotubes. Acta Mater. 55, 1769–1778 (2007)

    Article  Google Scholar 

  15. D. Micheli, C. Apollo, R. Pastore, M. Marchetti, X-band microwave characterization of carbon-based nanocomposite material, absorbing capability comparison and RAS design simulation. Compos. Sci. Technol. 70(2), 400–409 (2010)

    Article  Google Scholar 

  16. S.-E. Lee, O. Choi, H.T. Hahn, Microwave properties of graphite nanoplatelet/epoxy composites. J. Appl. Phys. 104, 033705 (2008)

    Article  ADS  Google Scholar 

  17. Y. Xu, D. Zhang, J. Cai, L. Yuan, W. Zhang, Microwave absorbing property of silicone rubber composites with added carbonyl iron particles and graphite platelet. J. Magn. Magn. Mater. 327, 82–86 (2013)

    Article  ADS  Google Scholar 

  18. Y. Xu, L. Yuan, J. Cai et al., Smart absorbing property of composites with MWCNTs and carbonyl iron as the filler. J. Magn. Magn. Mater. 343(5), 239–244 (2013)

    Article  ADS  Google Scholar 

  19. M. Zeng, J. Liu, M. Yue et al., High-frequency electromagnetic properties of the manganese ferrite nanoparticles. J. Appl. Phys. 117(17), 17B527 (2015)

    Article  Google Scholar 

  20. D. Micheli, C. Apollo, R. Pastore, D. Barbera, R.B. Morles, M. Marchetti et al., Optimization of multilayer shields made of composite nanostructured materials. IEEE Trans. Electromagn. Compat. 54(1), 60–69 (2012)

    Article  Google Scholar 

  21. D. Micheli, R. Pastore, A. Vricella et al., Matter’s electromagnetic signature reproduction by graded-dielectric multilayer assembly. IEEE Trans. Microw. Theory Tech. 99, 1–9 (2017)

    Google Scholar 

  22. M. Koledintseva, P.C. Ravva, J. Drewniak, A.A. Kitaitsev, A.A. Shinkov, Engineering of ferrite–graphite composite media for microwave shields. IEEE Int. Symp. Electromagn. Compat. 3, 598–602 (2006)

    Google Scholar 

  23. Y. Duan, Z. Liu, H. Jing, Y. Zhang, S. Li, Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties. J. Mater. Chem. 22, 18291 (2012)

    Article  Google Scholar 

  24. T. Liu, P.H. Zhou, J.L. Xie, L.J. Deng, Extrinsic permeability of Fe-based flake composites from intrinsic parameters: a comparison between the aligned and random cases. J. Magn. Magn. Mater. 324(4), 519–523 (2012)

    Article  ADS  Google Scholar 

  25. L.Z. Wu, J. Ding, H.B. Jiang, L.F. Chen, C.K. Ong, Particle size influence to the microwave properties of iron based magnetic particulate composites. J. Magn. Magn. Mater. 285(1–2), 233–239 (2005)

    Article  ADS  Google Scholar 

  26. D.T. Zimmerman, J.D. Cardellino, K.T. Cravener, K.R. Feather, N.M. Miskovsky, G.J. Weisel, Microwave absorption in percolating metal–insulator composites. Appl. Phys. Lett. 93, 214103 (2008)

    Article  ADS  Google Scholar 

  27. A.H. Sihvola, Self-consistency aspects of dielectric mixing theories. IEEE Trans. Geosci. Remote Sens. 27(4), 403–412 (1989)

    Article  ADS  Google Scholar 

  28. P. Chen, M. Liu, L. Wang, Y. Poo, R.X. Wu, Frequency dispersive complex permittivity and permeability of ferromagnetic metallic granular composite at microwave frequencies. J. Magn. Magn. Mater. 323, 3081–3086 (2011)

    Article  ADS  Google Scholar 

  29. P. Chen, R.X. Wu, T.E. Zhao, F. Yang, J.Q. Xiao, Complex permittivity and permeability of metallic magnetic granular composites at microwave frequencies. J. Phys. D Appl. Phys. 38, 2302–2305 (2005)

    Article  ADS  Google Scholar 

  30. Y. Xu, L. Yuan, D. Zhang, Enhancement mechanism of the additional absorbent on the absorption of the absorbing composite using a type-based mixing rule. J. Phys. D Appl. Phys. 49(15), 155001 (2016)

    Article  ADS  Google Scholar 

  31. Y. Xu, L. Yuan, X. Wang, D. Zhang, Two-step milling on the carbonyl iron particles and optimizing on the composite absorption. J. Alloy. Compd. 676, 251–259 (2016)

    Article  Google Scholar 

  32. C.R. Paul, Introduction to electromagnetic compatibility, 2nd edn. (Wiley, New York, 2006), p. 724

    Google Scholar 

  33. D. Micheli, A. Vricella, R. Pastore, A. Delfini, R. Bueno Morles, M. Marchetti, F. Santoni, L. Bastianelli, F. Moglie, V.M. Primiani, V. Corinaldesi, A. Mazzoli, J. Donnini, Electromagnetic properties of carbon nanotube reinforced concrete composites for frequency selective shielding structures. Constr. Build. Mater. 131, 267–277 (2017)

    Article  Google Scholar 

  34. S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim, K.S. Churn, Complex permeability and permittivity and microwave absorption of ferrite–rubber composites at X-band frequencies. IEEE Trans. Magn. 27(6), 5462–5464 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61601299), and the Science Foundation of Jilin Institute of Chemical Technology (Grant No. 2014068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Zhou, L., Zheng, D. et al. Absorption property of C@CIPs composites by the mechanical milling process. Appl. Phys. A 123, 565 (2017). https://doi.org/10.1007/s00339-017-1175-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1175-z

Navigation