Skip to main content
Log in

A study of SiC decomposition under laser irradiation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this experimental study we investigate the laser induced thermal decomposition of 4H-Sic under ambient conditions using fiber laser. Using a unique two-color pyrometer setup, we measure the temporal evolution of the temperature in the irradiated zone and determine the decomposition rate for various laser power levels. We find that the temporal evolution of the temperature in the irradiated area exhibits an initial heating phase up to about 1300 K, being characterized by an unaffected SiC surface. Upon an expeditious temperature increase, a decomposition phase follows with temperatures above 1700 K, being accompanied by carbonization of the SiC surface. The decomposed volume depends linearly on the duration of the decomposition phase and increases linearly with laser power. The temperature evaluation of the decomposition speed reveals an Arrhenius-type behavior allowing the calculation of the activation energy for the decomposition under ambient conditions to 613 kJ/mol in the temperature range between 2140 and 2420 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Mnatsakanov, L. Pomortseva, S. Yurkov, Semiempirical model of carrier mobility in silicon carbide for analyzing its dependence on temperature and doping level. Phys. Astron. 35(4), 394–397 (2001)

    Google Scholar 

  2. M. Ostling, High power devices in wide bandgap semiconductors. Sci. China 5, 1087–1093 (2011)

    Google Scholar 

  3. W.-C. Lien, N. Damrongplasit, J.H. Paredes, D.G. Senesky, T.-J.K. Liu, A.P. Pisano, 4H-SiC N-channel JFET for operation in high-temperature environments. IEEE J. Electron Devices Soc. 2(6), 164–167 (2014)

    Article  Google Scholar 

  4. M. Willander, M. Friesel, Q.-U. Wahab, B. Straumal, Silicon carbide and diamond for high temperature device applications. J. Mater. Sci. Mater. Electron. 17(1), 1–25 (2006)

    Article  Google Scholar 

  5. D.J. Spry, P.G. Neudeck, L. Chen, C.W. Chang, D. Lukco, G.M. Beheim, 4H-SiC JFET multilayer integrated circuit technologies tested up to 1000 K. ECS Trans. 69(11), 113–121 (2015)

    Article  Google Scholar 

  6. S. Ferrero, A. Albonico, U.M. Meotto, G. Rambola, S. Porro, F. Giorgis, D. Perrone, L. Scaltrito, E. Bontempi, L. Depero et al., Phase formation at rapid thermal annealing of nickel contacts on C-face n-type 4H-SiC. Mater. Sci. Forum 483–485, 733–736 (2005)

    Article  Google Scholar 

  7. S. Tanimoto, H. Okushi and K. Arai, Ohmic contacts for power devices on SiC. In: Silicon Carbide (Springer Nature, Berlin, 2004), pp. 651–669

  8. K. Nakashima, O. Eryu, S. Ukai, K. Yoshida, M. Watanabe, Improved ohmic contacts to 6H-SiC by pulsed laser processing. Mater. Sci. Forum 338–342, 1005–1008 (2000)

    Article  Google Scholar 

  9. Y. Ota, Y. Ikeda, M. Kitabatake, Laser alloying for ohmic contacts on SiC at room temperature. Mater. Sci. Forum 264–268, 783–786 (1998)

    Article  Google Scholar 

  10. A. Hürner, T. Schlegel, B. Adelmann, H. Mitlehner, R. Hellmann, A. Bauer, L. Frey, Alloying of ohmic contacts to n-type 4H-SiC via laser irradiation. Mater. Sci. Forum 740–742, 773–776 (2013)

    Article  Google Scholar 

  11. B. Adelmann, A. Hürner, T. Schlegel, A.J. Bauer, L. Frey, R. Hellmann, Laser alloying nickel on 4H-silicon carbide substrate to generate ohmic contacts. J. Laser Micro/Nanoeng. 8–1, 97–101 (2013)

    Article  Google Scholar 

  12. M. Farsari, G. Filippidis, S. Zoppel, Efficient femtosecond lasers micromachining of bulk 3C-SiC. J. Micromech. Microeng. 15, 1786–1789 (2005)

    Article  ADS  Google Scholar 

  13. O. Krüger, R. Grundmüller, UV laser processing for semiconductor devices. Laser Tech. J. 10(5), 26–30 (2013)

    Article  Google Scholar 

  14. L.M. Wee, L.E. Khoong, C.W. Tan, G.C. Lim, Solvent-assisted laser drilling of silicon carbide. Int. J. Appl. Ceram. Technol. 8, 1263–1376 (2011)

    Article  Google Scholar 

  15. G.-L. Roth, B. Adelmann, R. Hellmann, Cutting and drilling of SiC semiconductor by fiber laser. J. Laser Micro/Nanoeng. 10(3), 279–283 (2015)

    Article  Google Scholar 

  16. K. Zekentes, I. Zergioti, A. Klini, G. Constantinidis, Via hole formation in silicon carbide by laser micromachining. Mater. Sci. Forum 527–529, 1119–1122 (2006)

    Article  Google Scholar 

  17. B. Yilbas, S. Akhtar, C. Karatas, Laser straight cutting of alumina tiles: thermal stress analysis. Int. J. Adv. Manuf. Technol. 58, 1019–1030 (2012)

    Article  Google Scholar 

  18. B. Adelmann, R. Hellmann, Rapid micro hole laser drilling in ceramic substrates using single mode fiber laser. J. Mater. Process. Technol. 221, 80–86 (2015)

    Article  Google Scholar 

  19. F. Modest, T. Mallison, Transient elastic and viscoelastic thermal stresses during laser drilling of ceramics. Heat Transfer 123, 171–177 (2000)

    Article  Google Scholar 

  20. D. Goto, Y. Hijikata, S. Yagi, H. Yaguchi, Differences in SiC thermal oxidation process between crystalline surface orientations observed by in situ spectroscopic ellipsometry. J. Appl. Phys. 117(9), 095306 (2015)

    Article  ADS  Google Scholar 

  21. R.E. Nightingale, E.M. Woodruff, Radiation-induced dimensional charges in large graphite bars. Nucl. Sci. Eng. 19(4), 390–392 (1964)

    Google Scholar 

  22. W. Pachla, A. Morawski, P. Kovac, I. Husek, A. Mazur, T. Lada, R. Diduszko, T. Melisek, V. Strbik, M. Kulczyk, Properties of hydrostatically extruded in situ MgB2 wires doped with SiC. Supercond. Sci. Technol. 19(1), 1 (2006)

    Article  ADS  Google Scholar 

  23. R.I. Scace, G.A. Slack, Solubility of carbon in silicon and germanium. J. Chem. Phys. 30(6), 1551–1555 (1959)

    Article  ADS  Google Scholar 

  24. Q.N. Nguyen, E.J. Opila, R.C. Robinson, Oxidation of ultrahigh temperature ceramics in water vapor. J. Electrochem. Soc. 151(10), 558–562 (2004)

    Article  Google Scholar 

  25. R. Reitano, P. Baeri, N. Marino, Excimer laser induced thermal evaporation and ablation of silicon carbide. Appl. Surf. Sci. 96, 302–308 (1996)

    Article  ADS  Google Scholar 

  26. P. Baeri, C. Spinella, R. Reitano, Fast melting of amorphous silicon carbide induced by nanosecond laser pulse. Int. J. Thermophys. 20(4), 1211–1221 (1999)

    Article  Google Scholar 

  27. P. Molian, B. Pecholt, S. Gupta, Picosecond pulsed laser ablation and micromachining of 4H-SiC wafers. Appl. Surf. Sci. 255(8), 4515–4520 (2009)

    Article  ADS  Google Scholar 

  28. B. Pecholt, M. Vendan, Y. Dong, P. Molian, Ultrafast laser micromachining of 3C-SiC thin films for MEMS device fabrication. Int. J. Adv. Manuf. Technol. 39, 239–250 (2008)

    Article  Google Scholar 

  29. Z.C. Feng, SiC Power Materials (Springer, Berlin Heidelberg, 2004)

    Book  Google Scholar 

  30. N. Astrath, A. Bento, M. Baesso, A. Ferreira da Silva, C. Persson, Photoacoustic spectroscopy to determine the optical properties of thin film 4H-SiC. Thin Solid Films 515(5), 2821–2823 (2006)

    Article  ADS  Google Scholar 

  31. D.H. Duc, I. Naoki, F. Kazuyoshi, A study of near-infrared nanosecond laser ablation of silicon carbide. Int. J. Heat Mass Transf. 65, 713–718 (2013)

    Article  Google Scholar 

  32. C.-Y. Tsai, C.-Y. Tsai, C.-H. Chen, T.-L. Sung, T.-Y. Wu, F.-P. Shih, Theoretical model for intravalley and intervalley free-carrier absorption in semiconductor lasers: beyond the classical Drude model. IEEE J. Quantum Electron. 34(3), 552–559 (1998)

    Article  ADS  Google Scholar 

  33. H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, W. Ertmer, Application of ultrashort laser pulses for intrastromal refractive surgery. Graefe’s Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000)

    Article  Google Scholar 

  34. B. Adelmann, R. Hellmann, SiC absorption of near-infrared laser radiation at high temperatures. Appl. Phys. A 122(7), 1–7 (2016)

    Article  Google Scholar 

  35. S. Gupta, B. Pecholt, P. Molian, Excimer laser ablation of single crystal 4H-SiC and 6H-SiC wafers. J. Mater. Sci. 46(1), 196–206 (2011)

    Article  ADS  Google Scholar 

  36. B. Hornetz, H.-J. Michel, J. Halbritter, ARXPS studies of SiO2-SiC interfaces and oxidation of 6HSiC single crystal Si-(001) and C-(001) surfaces. J. Mater. Res. 9(12), 3088–3094 (1994)

    Article  ADS  Google Scholar 

  37. W.G. Fahrenholtz, Thermodynamic analysis of ZrB2-SiC oxidation: formation of a SiC-depleted region. J. Am. Ceram. Soc. 90, 143–148 (2007)

    Article  Google Scholar 

  38. A.B. Djurisic, E.H. Li, Optical properties of graphite. J. Appl. Phys. 85(10), 7404–7410 (1999)

    Article  ADS  Google Scholar 

  39. R.C. Robinson, J.L. Smialek, SiC recession caused by SiO 2scale volatility under combustion conditions: I, experimental results and empirical model. J. Am. Ceram. Soc. 82(7), 1817–1825 (1999)

    Article  Google Scholar 

  40. J. Han, P. Hu, X. Zhang, S. Meng, W. Han, Oxidation-resistant ZrB2-SiC composites at 2200 °C. Compos. Sci. Technol. 68(3–4), 799–806 (2008)

    Article  Google Scholar 

  41. J.-F. Huang, B. Wang, H.-J. Li, M. Liu, L.-Y. Cao, C.-Y. Yao, A MoSi2-SiC oxidation protective coating for carbon/carbon composites. Corros. Sci. 53(2), 834–839 (2011)

    Article  Google Scholar 

  42. K.-T. Wang, L.-Y. Cao, J.-F. Huang, J. Fei, A mullite SiC oxidation protective coating for carbon/carbon composites. J. Eur. Ceram. Soc. 33(1), 191–198 (2013)

    Article  Google Scholar 

  43. J. Drowart, G. De Maria, M.G. Inghram, Thermodynamic study of SiC utilizing a mass spectrometer. J. Chem. Phys. 29(5), 1015 (1958)

    Article  ADS  Google Scholar 

  44. F. van Dijen, R. Metselaar, The chemistry of the carbothermal synthesis of SiC: reaction mechanism, reaction rate and grain growth. J. Eur. Ceram. Soc. 7(3), 177–184 (1991)

    Article  Google Scholar 

  45. J.A. Costello, R.E. Tressler, Oxidation kinetics of hot-pressed and sintered alpha-SiC. Am. Ceram. Soc. 64(6), 327–331 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Adelmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adelmann, B., Hellmann, R. A study of SiC decomposition under laser irradiation. Appl. Phys. A 123, 454 (2017). https://doi.org/10.1007/s00339-017-1046-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1046-7

Navigation