Skip to main content
Log in

A new method for preparing mono-dispersed nanoparticles using magnetized water

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We studied the use of magnetized water on the size of the nanoparticles. Magnetized water found to reduce the diameter of the nanoparticles during a homogeneous precipitation process, which is a combination of nucleation and nuclei growth processes. We found that the modified water, which demonstrated different physical properties especially on the surface tension and viscosity, significantly influenced the both processes. Therefore, the nucleation process was initially prolonged in the homogeneous precipitation process due to the lower critical size of nucleus and higher rate of nucleation, and consequently formed smaller particles and a larger number of particles. Furthermore, the growth rate of nanoparticles was hindered owing to the higher viscosity of the water and restriction in the mass transport process. As a result, the precipitated particles with the magnetized water were eventually structured smaller particle diameter compared to the bulk. The presented method in here indicated a low cost, straightforward, and feasible technique for industrial application. In addition, this method could open a new promising perspective on nanomaterial synthesis in order to facilitate the production of monodispersed nanoparticles. Molecular dynamic confirmed that surface tension decreased as the external magnetic field was applied. Moreover, the density profile illustrated that the average number of hydrogen atoms is greater than oxygen atoms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.N.R Rao, A. Müller, A.K. Cheetham., Chem. Nanomat. (2004)

  2. Á. Ríos, M. Zougagh., Trends Anal. Chem 27, 54 (2008)

    Article  Google Scholar 

  3. G. Sberveglieri, I. Concina, E. Comini, M. Falasconi, M. Ferroni, V. Sberveglieri., Vacuum 86, 532 (2012)

    Article  ADS  Google Scholar 

  4. J.Y. Ying., Chem. Eng. Sci 61, 1540 (2006)

    Article  Google Scholar 

  5. V. Mohanraj, Y. Chen, Trop. J. Pharm. Res. 5, 561 (2007)

    Article  Google Scholar 

  6. V. Stone, B. Nowack, A. Baun, N. van den Brink, F. von der Kammer, M. Dusinska, R. Handy, S. Hankin, M. Hassellöv, E. Joner, Sci. Total Environ. 408, 1745 (2010)

    Article  Google Scholar 

  7. M. Hassellöv, J.W. Readman, J.F. Ranville, K. Tiede, Ecotoxicology 17, 344 (2008)

    Article  Google Scholar 

  8. J.-S. Yu, Z.-L. Yuan, G.-Z. Xie, Y.-D. Jiang., J. Elec. Sci. Technol. 8, 3 (2010)

    Google Scholar 

  9. G.R. Patzke, F. Krumeich, R. Nesper., Angew. Chem. Int. Ed 41, 2446–2461 (2002)

    Article  Google Scholar 

  10. W.-H. Zhong, Nanoscience and nanomaterials: synthesis, manufacturing and industry impacts, DEStech Publications, Inc, Lancaster 2012

    Google Scholar 

  11. H. Duan, D. Wang, Y. Li., Chem. Soc. Rev 44, 5778 (2015)

    Article  Google Scholar 

  12. M.A. López-Quintela, C. Tojo, M.C. Blanco, L. G. Rio, J.R. Leis., Curr. Opin. Colloid Inter. Sci. 9, 264 (2004)

    Article  Google Scholar 

  13. J.-F. Chen, Y.-H. Wang, F. Guo, X.-M. Wang, C. Zheng, Indus. Eng. Chem. Res. 39, 948 (2000)

    Article  Google Scholar 

  14. H.-I. Chen, H.-Y. Chang, Colloids Surf. A 242, 61 (2004)

    Article  Google Scholar 

  15. A. Myerson, Handbook of industrial crystallization, Butterworth-Heinemann, UK 2002

    Google Scholar 

  16. K.L. Mittal, P. Kumar, Handbook of Microemulsion Science and Technology, CRC Press, Baco Raton 1999

  17. X.-F. Pang, B. Deng, Physica B 403, 3571 (2008)

    Article  ADS  Google Scholar 

  18. F. Moosavi, M. Gholizadeh, J. Magn. Magn. Mater, 354, 239 (2014)

    Article  ADS  Google Scholar 

  19. Y.I. Cho, S.-H. Lee, Int. Comm. Heat Mass Trans, 32, 1 (2005)

    Article  Google Scholar 

  20. R. Cai, H. Yang, J. He, W. Zhu, J. Mol. Struct 938, 15 (2009)

    Article  ADS  Google Scholar 

  21. N. Verdel, P. Bukovec, Entropy, 16, 2146 (2014)

    Article  ADS  Google Scholar 

  22. Y. Zhao, L. Zhao, X. Wei, B. Han, H. Yan., J. Therm. Anal. Calorim 45, 13 (1995)

    Article  Google Scholar 

  23. S. Ozeki, J. Miyamoto, S. Ono, C. Wakai, T. Watanabe, J. Phy. Chem., 100, 4205 (1996)

    Article  Google Scholar 

  24. I.J. Lin, J. Yotvat, J. Magn. Magn. Mater, 83, 525 (1990)

    Article  ADS  Google Scholar 

  25. K.-T. Chang, C.-I. Weng, J. Appl. Phys 100, 43917 (2006)

    Article  Google Scholar 

  26. H. Hosoda, H. Mori, N. Sogoshi, A. Nagasawa, S. Nakabayashi, J. Phy. Chem. A, 108, 1461 (2004)

    Article  Google Scholar 

  27. B. Deng, X. Pang, Chin. Sci. Bull 52, 3179 (2007)

    Article  Google Scholar 

  28. R. Ohata, N. Tomita, Y. Ikada, J. Colloid Int. Sci 270, 413 (2004)

    Article  Google Scholar 

  29. H. Inaba, T. Saitou, K.-i. Tozaki, H. Hayashi, J. Appl. Phys 96, 6127 (2004)

    Article  Google Scholar 

  30. M.C. Amiri, A.A. Dadkhah, Colloids Surf., A 278, 252 (2006)

    Article  Google Scholar 

  31. L. Holysz, A. Szczes, E, Chibowski. J. Colloid Int. Sci 316, 996 (2007)

    Article  Google Scholar 

  32. Y.-Z. Guo, D.-C. Yin, H.-L. Cao, J.-Y. Shi, C.-Y. Zhang, Y.-M. Liu, H.-H. Huang, Y. Liu, Y. Wang, W.-H, Guo. Int. J. Mol. Sci 13, 16916 (2012)

    Article  Google Scholar 

  33. J. Nakagawa, N. Hirota, K. Kitazawa, M. Shoda. J. Appl. Phys 86, 2923 (1999)

    Article  ADS  Google Scholar 

  34. J. Nývlt, O. Sohnel, M. Matuchova, M. Broul, The kinetics of industrial crystallization Elsevier, Amsterdam, 1985

    Google Scholar 

  35. D. Adityawarman, A. Voigt, P. Veit, K. Sundmacher, Chem. Eng. Sci 60, 3373 (2005)

    Article  Google Scholar 

  36. A.A. Öncül, B. Niemann, K. Sundmacher, D. Thévenin, Chem. Eng. J 138, 498 (2008)

    Article  Google Scholar 

  37. M.R. Housaindokht, A. N. Pour, Solid-State Sci, 14, 622 (2012)

    Article  ADS  Google Scholar 

  38. B. Billia, R. Trivedi, D. Hurle, Vol, 1BNorth-Holland, Amsterdam, (1993)

  39. G. Frens, Nature 241, 20 (1973)

    ADS  Google Scholar 

  40. J. Venables, G. Spiller, M. Hanbucken, Rep. Prog. Phys 47, 399 (1984)

    Article  ADS  Google Scholar 

  41. B. Mutaftschiev, Handbook of crystal growth 1, 187 (2013)

    Google Scholar 

  42. B. Mutaftschiev, D. Hurle, Vol, 1aNorth-Holland, Amsterdam, 187(1993)

  43. N. Tavare, Analysis and Design, Plenum Press, New York, (1995)

    Google Scholar 

  44. B. Mutaftschiev, The atomistic nature of crystal growth, Springer Science & Business Media, 2013

  45. A. Ranodolph, Theory of Particulate Processes 2e: Analysis and Techniques of Continuous Crystallization, Elsevier, Newyork. 2012

    Google Scholar 

  46. A.D. Randolph, Larson M. A., Theory of Particulate Processes, 2nd edition, Academic Press, San Diego, 1988

    Google Scholar 

  47. A. Einstein, Investigations on the Theory of Brownian Motion, reprint of the 1st English edition (1926), in, Dover, New-York, 1956

  48. V.K. LaMer, R.H. Dinegar, J. Am. Chem. Soc. 72, 4847 (1950)

    Article  Google Scholar 

  49. A.Y. Toukmaji, J.A. Board, Comput. Phys. Commun, 95, 73 (1996)

    Article  ADS  Google Scholar 

  50. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)

    Article  ADS  Google Scholar 

  51. M.P. Allen, D.J. Tildesley, Computer simulation of liquids, Oxford university press, 1989

  52. J. Alejandre, D.J. Tildesley, G.A. Chapela, J. Chem. Phys. 102, 4574 (1995)

    Article  ADS  Google Scholar 

  53. W. Smith, Mol. Simu., 32, 933 (2006)

    Article  Google Scholar 

  54. W. Smith, T.R. Forester, J. Mol. Grap, 14, 136 (1996)

    Article  Google Scholar 

  55. M.H. Ghatee, A.R. Zolghadr, F. Moosavi, Y. Ansari, J. Chem. Phys. 136, 124706 (2012)

    Article  ADS  Google Scholar 

  56. J.J. Bikerman, Physical surfaces, Elsevier, New York, 2012

    Google Scholar 

  57. J.J. Bikerman, Surface Chemistry; for Industrial Research, Academic Press Inc., New York, 1947

    Google Scholar 

  58. K. Holmberg, B. Jönsson, B. Kronberg, B. Lindman, Surfactants and polymers in aqueous solution, Wiley, New York, 2003

    Google Scholar 

  59. L.A. Spielman, J. Colloid Interface Sci 33, 562–571 (1970)

    Article  Google Scholar 

  60. D. Tabor, Gases, liquids and solids: and other states of matter, Cambridge University Press, Cambridge, 1991

    Book  Google Scholar 

  61. A. Laaksonen, P. Kusalik, I. Svishchev, J. Phys. Chem. A 101, 5910–5918 (1997)

    Article  Google Scholar 

  62. A.A. Chialvo, P.T. Cummings, J. Phys. Chem. A 100, 1309–1316 (1996)

    Article  Google Scholar 

  63. C. Zhang, X. Yang, Fluid Phase Equilib, 231, 1–10(2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nakhaei Pour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhaei Pour, A., Gholizadeh, M., Housaindokht, M. et al. A new method for preparing mono-dispersed nanoparticles using magnetized water. Appl. Phys. A 123, 269 (2017). https://doi.org/10.1007/s00339-017-0876-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0876-7

Keywords

Navigation