Skip to main content
Log in

The influence of the thermal diffusivity of the substrates on fabrication of metal nanostructures by femtosecond laser irradiation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We demonstrate the fabrication of nanowire gratings by irradiation of femtosecond laser pulses to platinum thin films on various substrates: silicon carbide, aluminum nitride, silicon and fused silica. Scanning electron microscopy showed that many cracks were formed on the nanowire surfaces formed on silicon carbide, aluminum nitride and silicon substrates, while few cracks were formed on a fused silica substrate. Elemental analysis by energy-dispersive X-ray spectroscopy indicated that melting or evaporation of the platinum thin film could hardly occur in the case of the silicon carbide and aluminum nitride substrates. Calculated results by two temperature models revealed that the lattice temperature within the platinum thin films after laser irradiation depends on the thermal diffusivity of the substrates, which could influence the melting phase existence time. From the experimental and the calculated results, melting of the metal thin film could have influenced metal nanowire grating formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Zhang, H. Liu, J. Tian, Y. Song, L. Wang, Nano Lett. 8, 2653 (2008)

    Article  ADS  Google Scholar 

  2. R.A. Pala, J. White, E. Barnard, J. Liu, M.L. Brongersma, Adv. Mater 21, 3504 (2009)

    Article  Google Scholar 

  3. A. Sobhani, M.W. Knight, Y. Wang, B. Zheng, N.S. King, L.V. Brown, Z. Fang, P. Nordlander, N.J. Halas, Nat. Commun. 4, 1643 (2013)

    Article  ADS  Google Scholar 

  4. J.J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, X. Deng, Appl. Phys. Lett. 89, 141105 (2006)

    Article  ADS  Google Scholar 

  5. H. Tamada, T. Doumuki, T. Yamaguchi, S. Matsumoto, Opt. Lett 22, 419 (1997)

    Article  ADS  Google Scholar 

  6. K. Iwami, M. Ishii, Y. Kuramochi, K. Ida, N. Umeda, Appl. Phys. Lett. 101, 161119 (2012)

    Article  ADS  Google Scholar 

  7. Z. Y. Yang, M. Zhao, N.L. Dai, G. Yang, H. Long, Y.H. Li, P.X. Lu, IEEE Photonic. Technol. Lett. 20, 697 (2008)

    Article  ADS  Google Scholar 

  8. Q. Gan, H. Hu, H. Xu, K. Liu, S. Jiang, A. N. Cartwright, IEEE Photon. J. 3, 1083 (2011)

    Article  Google Scholar 

  9. M.Z. Chekroun, G. Bassou, L. Salomon, A. Zenati, A. Taalbi, H. Bendaoud, M. Ameri, J. Mod. Phys. 3, 102 (2012)

    Article  Google Scholar 

  10. S.J. Henley, J.D. Carey, S.R.P. Silva, Phys. Rev. B 72, 195408 (2005)

    Article  ADS  Google Scholar 

  11. N. Haustrup, G.M. O’Connor, Appl. Phys. Lett. 101, 263107 (2012)

    Article  ADS  Google Scholar 

  12. N. Haustrup, G.M. O’Connor, Appl. Surf. Sci 278, 86 (2013)

    Article  ADS  Google Scholar 

  13. Y. Nakata, T. Hiromoto, N. Miyanaga, Appl. Phys. A 101, 471 (2010)

    Article  Google Scholar 

  14. K. Nishioka, S. Horita, Jpn. J. Appl. Phys 46, L556 (2007)

    Article  ADS  Google Scholar 

  15. Y. Nakajima, N. Nedyalkov, A. Takami, M. Terakawa, Appl. Phys. A 119, 1215 (2015)

    Article  Google Scholar 

  16. J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, J. Laser Appl 24, 042006 (2012)

    Article  ADS  Google Scholar 

  17. R. Buividas, M. Mikutis, S. Juodkazis, Prog. Quantum Electron. 38, 119 (2014)

    Article  ADS  Google Scholar 

  18. J. Kim, S. Na, Opt. Laser Technol, 39, 1443 (2007)

    Article  ADS  Google Scholar 

  19. M. Neubronner, T. Bodmer, Properties of Solids and Solid Materials, 2nd edn. (Springer, Heidelberg, 2010)

    Google Scholar 

  20. W.M. Haynes, CRC Handbook of Chemistry and Physics, 95th edn. (CRC Press, Boca Raton, 2014)

    Google Scholar 

  21. G.A. Slack, R.A. Tanzilli, R.O. Pohl, J.W. Vandersande, J. Phys. Chem. Solids 48, 641 (1987)

    Article  ADS  Google Scholar 

  22. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Sov. Phys. JETP 39, 375 (1974)

    ADS  Google Scholar 

  23. I.H. Chowdhury, X. Xu, Numer. Heat Transfer A 40, 219 (2003)

    Article  ADS  Google Scholar 

  24. J. Hohlfeld, S.S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, Chem. Phys 251, 237 (2000)

    Article  ADS  Google Scholar 

  25. S.S. Wellershoff, J. Güdde, E. Matthias, Appl. Phys. A 69, 99 (1999)

    Article  Google Scholar 

  26. D.E. Gray, American Institute of Physics Handbook, 3rd edn. (McGraw-Hill, New York, 1972)

    MATH  Google Scholar 

  27. N.W. Ashcroft, N.D. Mermin, Solid State Physics, (Holt Rinehart and Winton, New York, 1976)

    MATH  Google Scholar 

  28. A. Y. Vorobyev, C. Guo, J. Appl. Phys 104, 053516 (2008)

    Article  ADS  Google Scholar 

  29. M.J. Weber, Handbook of Optical Materials. (CRC Press, Boca Raton, 2003)

    Google Scholar 

  30. A.Y. Vorobyev, V.S. Makin, C. Guo, J. Appl. Phys 101, 034903 (2007)

    Article  ADS  Google Scholar 

  31. S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, Z. Xu, J. Phys. D Appl. Phys 44, 505401 (2011)

    Article  ADS  Google Scholar 

  32. S.K. Sundaram, E. Mazur, Nat. Mater 1, 217 (2002)

    Article  ADS  Google Scholar 

  33. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Appl. Phys. A 79, 767 (2004)

    Article  Google Scholar 

  34. M. Zamfirescu, A. Dinescu, M. Danila, G. Socol, C. Radu, Appl. Surf. Sci 258, 9385 (2012)

    Article  ADS  Google Scholar 

  35. K. Nishioka, S. Horita, Jpn. J. Appl. Phys 46, 4154 (2007)

    Article  ADS  Google Scholar 

  36. G.D. Tsibidis, M. Barberoglou, P.A. Loukakos, E. Stratakis, C. Fotakis, Phys. Rev. B 86, 115316 (2012)

    Article  ADS  Google Scholar 

  37. S. Sakabe, M. Hashida, S. Tokita, S. Namba, K. Okamuro, Phys. Rev. B 79, 033409 (2009)

    Article  ADS  Google Scholar 

  38. K. Miyazaki, G. Miyaji, T. Inoue. Appl. Phys. Lett. 107, 071103 (2015)

    Article  ADS  Google Scholar 

  39. A. Borowiec, H.K. Haugen. Appl. Phys. Lett. 82, 4462 (2003)

    Article  ADS  Google Scholar 

  40. X. Li, C. Zhang, H. Li, Q. Dai, S. Lan, S. Tie, Opt. Express 22, 28086 (2014)

    Article  ADS  Google Scholar 

  41. J.W. Yao, C.Y. Zhang, H.Y. Liu, Q.F. Dai, L.J. Wu, S. Lan, A.V. Gopal, V.A. Trofimov, T.M. Lysak, Opt. Express 20, 905 (2012)

    Article  ADS  Google Scholar 

  42. J. Reif, F. Costache, M. Henyk, S.V. Pandelov, Appl. Surf. Sci 197, 891 (2002)

    Article  ADS  Google Scholar 

  43. Y. Nakajima, N. Nedyalkov, A. Takami, M. Terakawa, Appl. Surf. Sci 394, 108 (2017)

    Article  ADS  Google Scholar 

  44. K. Takahashi, A. Yoshikawa, A. Sandhu, Wide Bandgap Semiconductors. (Springer, Heidelberg, 2007)

    Book  Google Scholar 

  45. W.M. Yim, E.J. Stofko, P.J. Zanzucchi, J.I. Pankove, M. Ettenberg, S.L. Gilbert, J. Appl. Phys 44, 292 (1973)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Y. Nakajima is grateful for a Grant-in-Aid for Research Fellow of the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Terakawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takami, A., Nakajima, Y., Nedyalkov, N. et al. The influence of the thermal diffusivity of the substrates on fabrication of metal nanostructures by femtosecond laser irradiation. Appl. Phys. A 123, 126 (2017). https://doi.org/10.1007/s00339-017-0771-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0771-2

Keywords

Navigation