Skip to main content
Log in

Formation of copper tin sulfide films by pulsed laser deposition at 248 and 355 nm

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The influence of the laser wavelength on the deposition of copper tin sulfide (CTS) and SnS-rich CTS with a 248-nm KrF excimer laser (pulse length τ = 20 ns) and a 355-nm frequency-tripled Nd:YAG laser (τ = 6 ns) was investigated. A comparative study of the two UV wavelengths shows that the CTS film growth rate per pulse was three to four times lower with the 248-nm laser than the 355-nm laser. SnS-rich CTS is more efficiently ablated than pure CTS. Films deposited at high fluence have submicron and micrometer size droplets, and the size and area density of the droplets do not vary significantly from 248 to 355 nm deposition. Irradiation at low fluence resulted in a non-stoichiometric material transfer with significant Cu deficiency in the as-deposited films. We discuss the transition from a non-stoichiometric material transfer at low fluence to a nearly stoichiometric ablation at high fluence based on a transition from a dominant evaporation regime to an ablation regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.B. Mitzi, O. Gunawan, T.K. Todorov, D.A.R. Barkhouse, Philos. Trans. R. Soc. A 371, 20110432 (2013)

  2. S. Tajima, T. Itoh, H. Hazama, K. Ohishi, R. Asahi, Appl. Phys. Express 8, 082302 (2015)

    Article  ADS  Google Scholar 

  3. T.A. Kuku, O.A. Fakolujo, Sol. Energy Mater. 16, 199 (1987)

    Article  Google Scholar 

  4. P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Phys. Status Solidi C 7(3–4), 901 (2010)

    Google Scholar 

  5. P. Zawadzki, L.L. Baranowski, H. Peng, E.S. Toberer, D.S. Ginley, W. Tumas, A. Zakutayev, S. Lany, Appl. Phys. Lett. 103, 253902 (2013)

    Article  ADS  Google Scholar 

  6. N. Aihara, H. Araki, A. Takeuchi, K. Jimbo, H. Katagiri, Phys. Status Solidi C 10, 1086 (2013)

    Article  Google Scholar 

  7. M. Nakashima, J. Fujimoto, T. Yamaguchi, M. Izaki, Appl. Phys. Express 8, 042303 (2015)

    Article  ADS  Google Scholar 

  8. R.B. Ettlinger, A. Cazzaniga, S. Canulescu, N. Pryds, J. Schou, Appl. Surf. Sci. 336, 385 (2015)

    Article  ADS  Google Scholar 

  9. S.A. Vanalakar, G.L. Agawane, A.S. Kamble, C.W. Hong, P.S. Patil, J.H. Kim, Sol. Energy Mater. Sol. Cells 138, 1 (2015)

    Article  Google Scholar 

  10. J. Schou, Appl. Surf. Sci. 255, 5191 (2009)

    Article  ADS  Google Scholar 

  11. D.H. Lowndes, in Laser Ablation Desorption, Experimental Methods in the Physical Sciences, vol. 30, ed. by J.C. Miller, R.F. Haglund (Academic Press, New York, 1998), pp. 475–571

    Chapter  Google Scholar 

  12. K. Ito, in Copper Zinc Tin Sulfide-Based Thin Film Solar Cells, 1st edn., ed. by K. Ito (Wiley, Chichester, West Sussex, 2015), pp. 34–35

    Google Scholar 

  13. N.S. Che Sulaiman, C.H. Nee, S.L. Yap, Y.S. Lee, T.Y. Tou, S.S. Yap, Appl. Surf. Sci. 354, 42 (2015)

    Article  ADS  Google Scholar 

  14. L.-C. Chen, E.L. Hall, Mater. Res. Soc. Symp. Proc. 285, 519 (1993)

    Article  Google Scholar 

  15. W.O. Siew, S.S. Yap, C. Ladam, Ø. Dahl, T.W. Reenaas, T.Y. Tou, Appl. Phys. A 104, 877 (2011)

    Article  ADS  Google Scholar 

  16. N.J. Ianno, L. McConville, N. Shaikh, S. Pittal, P.G. Snyder, Thin Solid Films 220, 92 (1992)

    Article  ADS  Google Scholar 

  17. G. Koren, A. Gupta, R.J. Baseman, M.I. Lutwyche, R.B. Laibowitz, Appl. Phys. Lett. 55, 2450 (1989)

    Article  ADS  Google Scholar 

  18. W. Kautek, B. Roas, L. Schultz, Thin Solid Films 191, 317 (1990)

    Article  ADS  Google Scholar 

  19. L.-C. Chen, in Pulsed Laser Deposition. Thin Film, 1st edn., ed. by D.B. Crisey, G.K. Hubler (Wiley, New York, 1994), pp. 167–198

    Google Scholar 

  20. K. Moriya, K. Tanaka, H. Uchiki, Jpn. J. Appl. Phys. 47, 602 (2008)

    Article  ADS  Google Scholar 

  21. S.M. Pawar, A.V. Moholkar, I.K. Kim, S.W. Shin, J.H. Moon, J.I. Rhee, J.H. Kim, Curr. Appl. Phys. 10, 565 (2010)

    Article  ADS  Google Scholar 

  22. K. Ujimoto, T. Yoshimura, A. Ashida, N. Fujimura, Jpn. J. Appl. Phys. 52, 045803 (2013)

    Article  ADS  Google Scholar 

  23. D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin, Scanning 29, 92 (2007)

    Article  Google Scholar 

  24. L.I. Berger, in CRC Handbook of Chemistry and Physics, 96th edn., ed. by W.M. Haynes, T.J. Bruno, D.R. Lide (CRC Press, Boca Raton, 2015), pp. 12-80–12-93

    Google Scholar 

  25. W.M. Haynes, T.J. Bruno, D.R. Lide (eds.), CRC Handbook of Chemistry and Physics, 96th edn. (CRC Press, Boca Raton, 2015), pp. 4–43–4–101

    Google Scholar 

  26. L.A. Burton, D. Colombara, R.D. Abellon, F.C. Grozema, L.M. Peter, T.J. Savenije, G. Dennler, A. Walsh, Chem. Mater. 25, 4908–4916 (2013)

    Article  Google Scholar 

  27. O. Madelung, U. Rössler, M. Schulz (eds), Springer Materials Series Landolt-Börnstein - Gr. III Condensed Matter, Subvolume 41C, Non-tetrahedrally Bonded Elements and Binary Compounds I (Springer, Berlin, 1998), pp. 1–2

  28. A. Crovetto, R. Chen, B. Ettlinger, A.C. Cazzaniga, J. Schou, O. Hansen, C. Persson (2016) (submitted)

  29. O. Madelung, U. Rössler, M. Schulz (eds.), Non-tetrahedrally Bonded Elements and Binary Compounds I (Springer, Berlin, 1998), pp. 1–8

    Google Scholar 

  30. A. Weber, R. Mainz, H.W. Schock, J. Appl. Phys. 107, 013516 (2010)

    Article  ADS  Google Scholar 

  31. W.M. Haynes, T.J. Bruno, D.R. Lide (eds.), CRC Handbook of Chemistry and Physics, 96th edn. (CRC Press, Boca Raton, 2015), pp. 6-88–6-116

  32. T. Ohnishi, T. Yamamoto, S. Meguro, H. Koinuma, M. Lippmaa, J. Phys. Conf. Ser. 59, 514 (2007)

    Article  ADS  Google Scholar 

  33. B. Dam, J.H. Rector, J. Johansson, J. Huijbregtse, D.G. De Groot, J. Appl. Phys. 83, 3386 (1998)

    Article  ADS  Google Scholar 

  34. T. Venkatesan, X.D. Wu, A. Inam, J.B. Wachtman, Appl. Phys. Lett. 52, 1193 (1988)

    Article  ADS  Google Scholar 

  35. C. Kittel, Introduction to Solid State Physics, 3rd edn. (Wiley, New York, 1966) p. 78

    Google Scholar 

  36. A. Kanai, K. Toyonaga, K. Chino, H. Katagiri, H. Araki, Jpn. J. Appl. Phys. 54, 08KC06 (2015)

    Article  Google Scholar 

  37. M. Nakashima, T. Yamaguchi, H. Itani, J. Sasano, M. Izaki, Phys. Status Solidi C 12, 761 (2015)

    Article  Google Scholar 

  38. B. Richards, Trans. Faraday Soc. 51, 1193 (1955)

    Article  Google Scholar 

  39. V. Piacente, S. Foglia, P. Scardala, J. Alloys Compd. 177, 17 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by a grant from the Danish Council for Strategic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Bolt Ettlinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ettlinger, R.B., Crovetto, A., Canulescu, S. et al. Formation of copper tin sulfide films by pulsed laser deposition at 248 and 355 nm. Appl. Phys. A 122, 466 (2016). https://doi.org/10.1007/s00339-016-9939-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9939-4

Keywords

Navigation