Skip to main content
Log in

Localized acoustic surface modes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  2. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)

    Google Scholar 

  3. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  4. J. Homola, S.S. Yee, G. Gauglitz, Sens. Actuator B Chem. 54, 3–15 (1999)

    Article  Google Scholar 

  5. D.K. Gramotnev, S.I. Bozhevolnyi, Nat. Photonics 4, 83–91 (2010)

    Article  ADS  Google Scholar 

  6. S.A. Maier, H.A. Atwater, J. Appl. Phys. 98, 011101 (2005)

    Article  ADS  Google Scholar 

  7. N. Engheta, Science 317, 1698–1702 (2007)

    Article  ADS  Google Scholar 

  8. G. Lozano et al., Light Sci. Appl. 2, e66 (2013)

    Article  Google Scholar 

  9. H.A. Atwater, A. Polman, Nat. Mater. 9, 205–213 (2010)

    Article  ADS  Google Scholar 

  10. L. Ju et al., Nat. Nanotech. 6, 630–634 (2011)

    Article  ADS  Google Scholar 

  11. M. Farhat, S. Guenneau, H. Bağcı, Phys. Rev. Lett. 111, 237404 (2013)

    Article  ADS  Google Scholar 

  12. J. Schiefele, J. Pedros, F. Sols, F. Calle, F. Guinea, Phys. Rev. Lett. 111, 237405 (2013)

    Article  ADS  Google Scholar 

  13. P.Y. Chen, M. Farhat, A. Alù, Phys. Rev. Lett. 106, 105503 (2011)

    Article  ADS  Google Scholar 

  14. G.V. Naik, V.M. Shalaev, A. Boltasseva, Adv. Mater. 25, 3264–3294 (2013)

    Article  Google Scholar 

  15. J.B. Pendry, L. Martin-Moreno, F.J. Garcia-Vidal, Science 305, 847–848 (2004)

    Article  ADS  Google Scholar 

  16. A.P. Hibbins, B.R. Evans, J.R. Sambles, Science 308, 670–672 (2005)

    Article  ADS  Google Scholar 

  17. F.J. Garcia de Abajo, J.J. Saenz, Phys. Rev. Lett. 95, 233901 (2005)

    Article  ADS  Google Scholar 

  18. F.J. Garcia-Vidal, L. Martin-Moreno, J.B. Pendry, J. Opt. A Pure Appl. Opt. 7, 97–101 (2005)

    Article  ADS  Google Scholar 

  19. M.A. Kats, D. Woolf, R. Blanchard, N. Yu, F. Capasso, Opt. Express 19, 14860–14870 (2011)

    Article  ADS  Google Scholar 

  20. R. Stanley, Nat. Photonics 6, 409–411 (2012)

    Article  ADS  Google Scholar 

  21. P.A. Huidobro et al., Phys. Rev. X 4, 021003 (2014)

    Google Scholar 

  22. A. Pors, E. Moreno, L. Martin-Moreno, J.B. Pendry, F.J. Garcia-Vidal, Phys. Rev. Lett. 108, 223905 (2012)

    Article  ADS  Google Scholar 

  23. Z. Liu et al., Science 289, 1734–1736 (2000)

    Article  ADS  Google Scholar 

  24. R.V. Craster, S. Guenneau (eds.), Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking (Springer, Berlin, 2013)

    Google Scholar 

  25. G. Goffaux et al., Phys. Rev. Lett. 88, 225502 (2002)

    Article  ADS  Google Scholar 

  26. J. Li, C.T. Chan, Phys. Rev. E 70, 055602(R) (2004)

    Article  ADS  Google Scholar 

  27. S. Yang et al., Phys. Rev. Lett. 93, 024301 (2004)

    Article  ADS  Google Scholar 

  28. J. Christensen, A.I. Fernandez-Dominguez, F. de Leon-Perez, L. Martin-Moreno, F.J. Garcia-Vidal, Nat. Phys. 3, 851–852 (2007)

    Article  Google Scholar 

  29. M. Farhat, S. Enoch, S. Guenneau, A.B. Movchan, Phys. Rev. Lett. 101, 134501 (2008)

    Article  ADS  Google Scholar 

  30. M. Farhat et al., Phys. Rev. E 77, 046308 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  31. S. Zhang, L. Yin, N. Fang, Phys. Rev. Lett. 102, 194301 (2009)

    Article  ADS  Google Scholar 

  32. M. Farhat, S. Guenneau, S. Enoch, EPL Europhys. Lett. 91, 54003 (2010)

    Article  ADS  Google Scholar 

  33. P.Y. Chen, M. Farhat, S. Guenneau, S. Enoch, A. Alù, Appl. Phys. Lett. 99, 191913 (2011)

    Article  ADS  Google Scholar 

  34. B.I. Popa, L. Zigoneanu, S.A. Cummer, Phys. Rev. Lett. 106, 253901 (2011)

    Article  ADS  Google Scholar 

  35. I. Spiousas, D. Torrent, J. Sanchez-Dehesa, Appl. Phys. Lett. 98, 244102 (2011)

    Article  ADS  Google Scholar 

  36. Z. He et al., Phys. Rev. B 83, 132101 (2011)

    Article  ADS  Google Scholar 

  37. J. Christensen, Z. Liang, M. Willatzen, Phys. Rev. B 88, 100301(R) (2013)

    Article  ADS  Google Scholar 

  38. J. Christensen, Z. Liang, M. Willatzen, AIP Adv. 4, 124301 (2014)

    Article  ADS  Google Scholar 

  39. B. Diaconescu et al., Nature 448, 57–59 (2007)

    Article  ADS  Google Scholar 

  40. M. Smerieri et al., Phys. Rev. Lett. 113, 186804 (2014)

    Article  ADS  Google Scholar 

  41. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667–669 (1998)

    Article  ADS  Google Scholar 

  42. M.H. Lu et al., Phys. Rev. Lett. 99, 174301 (2007)

    Article  ADS  Google Scholar 

  43. J. Christensen, L. Martin-Moreno, F.J. Garcia-Vidal, Phys. Rev. Lett. 101, 014301 (2008)

    Article  ADS  Google Scholar 

  44. A.F. Harvey, IRE Trans. Microw. Theory Tech. 8, 30 (1960)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially funded by King Abdulaziz City for Science and Technology’s TIC (Technology Innovation Center) for Solid-state Lighting at KAUST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Farhat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhat, M., Chen, PY. & Bağcı, H. Localized acoustic surface modes. Appl. Phys. A 122, 377 (2016). https://doi.org/10.1007/s00339-016-9876-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9876-2

Keywords

Navigation