Skip to main content
Log in

Magnetic evolution in transition metal-doped Co3−x M x O4 (M = Ni, Fe, Mg and Zn) nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, M (Ni, Fe, Mg, and Zn)-doped Co3O4 nanoparticles were controllably synthesized by microwave reaction method. The growth of the Co3O4 nanoparticles was induced by the transition metal ions without the addition of any surfactants. The phase and morphology of nanoparticles were analyzed through XRD and SEM analyses. The vibrational modes of metal oxides were confirmed from FTIR and Raman spectroscopic studies. Optical properties were carried out from PL study, and it confirms the presence of defect-level emissions. Vibrating sample magnetometer study revealed small ferromagnetic nature of Co3O4 nanoparticles. The results manifest that TM-doped Co3O4 nanostructures are promising materials for magnetic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854 (2001)

    Article  ADS  Google Scholar 

  2. K. Ueda, H. Tabata, T. Kawai, Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79, 988 (2001)

    Article  ADS  Google Scholar 

  3. F. Pan, C. Song, X.J. Liu, Y.C. Yang, F. Zeng, Ferromagnetism and possible applications in spintronics of transition metal doped ZnO thin films Mater. Sci. Eng. R. 62, 1 (2008)

    Article  Google Scholar 

  4. S.B. Ogale, Dilute doping, defects, and ferromagnetism in metal oxide systems. Adv. Mater. 22, 3125 (2010)

    Article  Google Scholar 

  5. S.J. Pearton, W.H. Heo, M. Ivill, D.P. Norton, T. Steiner, Dilute magnetic semiconducting oxides. Semicond. Sci. Technol. 19, R59 (2004)

    Article  ADS  Google Scholar 

  6. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173 (2005)

    Article  ADS  Google Scholar 

  7. G. Anandha Babu, G. Ravi, Y. Hayakawa, Microwave synthesis and effect of CTAB on ferromagnetic properties of NiO, Co3O4 and NiCo2O4 nanostructures. Appl. Phys. A 119, 219 (2015)

    Article  ADS  Google Scholar 

  8. K. Stao, P.H. Dederichs, H.K. Yoshida, Curie temperatures of III–V diluted magnetic semiconductors calculated from first principles. Europhys. Lett. 61, 403 (2003)

    Article  ADS  Google Scholar 

  9. K. Stao, P.H. Dederichs, H.K. Yoshida, J. Kudrnovsky, Magnetic impurities and materials design for semiconductor spintronics. Phys. B 340, 863 (2003)

    Article  ADS  Google Scholar 

  10. J. Kudrnovsky, I. Turek, V. Drchal, F. Maca, P. Weinberger, P. Bruno, Exchange interactions in III–V and group-IV diluted magnetic semiconductors. Phys. Rev. B 69, 115208 (2004)

    Article  ADS  Google Scholar 

  11. P.A. Stampe, R.J. Kennedy, Y. Xin, J.S. Parker, Investigation of the cobalt distribution in TiO2: Co thin films. J. Appl. Phys. 92, 7114 (2002)

    Article  ADS  Google Scholar 

  12. J.Y. Kim, J.H. Park, B.G. Park, H.J. Noh, S.J. Oh, J.S. Yang, D.H. Kim, S.D. Bu, T.W. Noh, H.J. Lin, H.H. Hsieh, C.T. Chen, Ferromagnetism induced by clustered Co in Co-doped anatase TiO2 thin films. Phys. Rev. Lett. 90, 017401 (2003)

    Article  ADS  Google Scholar 

  13. J.H. Kim, H. Kim, D. Kim, Y.E. Ihm, W.K. Choo, The origin of room temperature ferromagnetism in cobalt-doped zinc oxide thin films fabricated by PLD. J. Eur. Ceram. Soc. 24, 1847 (2004)

    Article  Google Scholar 

  14. J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, Y.M. Kim, Co-Metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett. 84, 1338 (2004)

    Article  ADS  Google Scholar 

  15. J.M.D. Coey, Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 27, 1140 (1971)

    Article  ADS  Google Scholar 

  16. Y. Nakamura, H. Ogawa, T. Nakashima, A. Kishimoto, H. Yanagida, Strain-dependent electrical-conduction in the system NiO–CaO. J. Am. Chem. Soc. 80, 1609 (1997)

    Google Scholar 

  17. J. Wang, J. Cai, Y.H. Lin, C.W. Nan, Room-temperature ferromagnetism observed in Fe-doped NiO. Appl. Phys. Lett. 87, 2501 (2005)

    ADS  Google Scholar 

  18. S. Manna, A.K. Deb, J. Jagannath, S.K. De, Synthesis and room temperature ferromagnetism in Fe doped NiO nanorods. J. Phys. Chem. C 112, 10659 (2008)

    Article  Google Scholar 

  19. J.H. He, S.L. Yuan, Z.M. Tian, Y.S. Yin, P. Li, Y.Q. Wang, K.L. Liu, S.J. Yuan, X.L. Wang, L. Liu, Magnetic properties in Fe-doped NiO synthesized by co-precipitation. J. Magn. Magn. Mater. 320, 3293 (2008)

    Article  ADS  Google Scholar 

  20. Hongxiao Jin, Gu Xiaojian, Bo Hong, Langsheng Lin, Chiya Wang, Dingfeng Jin, Xiaoling Peng, Xinqing Wang, Hongliang Ge, Fabrication of mesoporous Co3O4 from LP-FDU-12 via nanocasting route and effect of wall/pore size on their magnetic properties. J. Phys. Chem. C 116, 13374 (2012)

    Article  Google Scholar 

  21. J. Khemprasit, S. Kaenngam, B. Khumpaitool, P. Kamkhou, Effects of calcining temperature on structural and magnetic properties of nanosized Fe -doped NiO prepared by diol-based sol−gel process. J. Magn. Magn. Mater. 323, 2408 (2011)

    Article  ADS  Google Scholar 

  22. M.P. Proenca, C.T. Sousa, A.M. Pereira, P.B. Tavares, J. Ventura, M. Vazquez, J.P. Araujo, Size and surface effects on the magnetic properties of NiO nanoparticles. Phys. Chem. Chem. Phys. 13, 9561 (2011)

    Article  Google Scholar 

  23. Jixin Zhu, Zhou Gui, From layered hydroxide compounds to labyrinth-like NiO and Co3O4 porous nanosheets. Mater. Chem. Phys. 118, 243 (2009)

    Article  ADS  Google Scholar 

  24. G. Anandha Babu, G. Ravi, M. Navaneethan, M. Arivanandhan, Y. Hayakawa, Size and Surface Effects OF Ce-doped NiO and Co3O4 nanostructures on ferromagnetism behavior prepared by the microwave route. J. Phys. Chem. C 118, 23335 (2014)

    Article  Google Scholar 

  25. V.G. Hadjiev, M.N. Iliev, I.V. Vergilov, The Raman spectra of Co3O4. J. Phys. C: Solid State Phys. 21, 50 (1988)

    Article  Google Scholar 

  26. B. Cao, W. Cai, G. Duan, Y. Li, Q. Zhao, D. Yu, Template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties. Nanotechnology 16, 2567 (2005)

    Article  ADS  Google Scholar 

  27. G. Wang, X. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler, J. Yao, Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods. J. Phys. Chem. C 113, 4357 (2009)

    Article  Google Scholar 

  28. Q. Jiao, M. Fu, C. You, Y. Zhao, L. Hansheng, Preparation of hollow Co3O4 microspheres and their ethanol sensing properties. Inorg. Chem. 51, 11513 (2012)

    Article  Google Scholar 

  29. R. Xu, H.C. Zeng, Self-generation of tiered surfactant superstructures for one-pot synthesis of Co3O4 nanocubes and their close- and non-close-packed organizations. Langmuir 20, 9780 (2004)

    Article  Google Scholar 

  30. X. Wang, X. Chen, L. Gao, H. Zheng, Z. Zhang, Y. Qian, One-dimensional arrays of Co3O4 Nanoparticles: synthesis, characterization, and optical and electrochemical properties. J. Phys. Chem. B 108, 16401 (2004)

    Article  Google Scholar 

  31. D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, E. Tondello, Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt(II) precursor by chemical vapor deposition. Chem. Mater. 13, 588 (2001)

    Article  Google Scholar 

  32. R. Al-Tuwirqi, A.A. Al-Ghamdi, N.A. Aal, A. Umar, W.E. Mahmoud, Facile synthesis and optical properties of Co3O4 nanostructures by the microwave route. Superlattices Microstruct. 49, 416 (2011)

    Article  ADS  Google Scholar 

  33. K. Sathishkumar, N. Shanmugamn, N. Kannadasan, S. Cholan, G. Viruthagiri, Influence of Zn2+ ions incorporation on the magnetic and pseudo capacitance behaviors of NiO nanoparticles. Mater. Sci. Semicond. Process. 27, 846 (2014)

    Article  Google Scholar 

  34. Yu. Chang-Feng, Sy-Hann Chen, Shih-Jye Sun, Hsiung Chou, Influence of the substrate temperature on the electrical and magnetic properties of ZnO: N thin films grown by pulse laser deposition. J. Phys. D Appl. Phys. 42, 035001 (2009)

    Article  ADS  Google Scholar 

  35. G. Anandha babu, G. Ravi, Quantification of ferromagnetism in metal doped NiO nanostructures. Mater. Lett. 161, 149 (2015)

    Article  Google Scholar 

  36. X.P. Shen, H.J. Miao, H. Zhao, Z. Xu, Synthesis, characterization and magnetic properties of Co3O4 nanotubes. Appl. Phys. A 91, 47 (2008)

    Article  ADS  Google Scholar 

  37. G. Anandha Babu, G. Ravi, Y. Hayakawa, M. Kumaresavanji, Synthesis and calcinations effects on size analysis of Co3O4 nanospheres and their superparamagnetic behaviors. J. Magn. Magn. Mater. 375, 18 (2015)

    Article  Google Scholar 

  38. A.S. Bhatt, D.K. Bhat, C.-W. Tai, M.S. Santosh, Preparation of Co3O4 nanoparticles by nonhydrolytic thermolysis of [Co (Pht)(H2O)]n polymers. Mater. Chem. Phys. 125, 347 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors, G.Anandha babu gratefully acknowledges financial support for this study from DST, India, under the scheme of INSPIRE Fellowship (Grant No: IF110040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ravi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anandha babu, G., Ravi, G. Magnetic evolution in transition metal-doped Co3−x M x O4 (M = Ni, Fe, Mg and Zn) nanostructures. Appl. Phys. A 122, 177 (2016). https://doi.org/10.1007/s00339-016-9710-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9710-x

Keywords

Navigation