Skip to main content
Log in

Plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

UV irradiation of materials consisting of a polymer matrix that possesses precursors of different kinds can result in creation of nanoparticles within the irradiated domains. Such photoinduced nanocomposites are promising for photonic applications due to the strong alteration of their optical properties compared to initial non-irradiated materials. We report our results on the synthesis and investigation of plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites. Plasmonic nanocomposites contain metal nanoparticles of noble metals with a pronounced plasmon resonance. Excitonic nanocomposites possess semiconductor nanoclusters (quantum dots). We consider the CdS–Au pair because the luminescent band of CdS nanoparticles enters the plasmon resonance band of gold nanoparticles. The obtaining of such particles within the same composite materials is promising for the creation of media with exciton–plasmon resonance. We demonstrate that it is possible to choose appropriate precursor species to obtain the initially transparent poly(methyl methacrylate) (PMMA) films containing both types of these molecules either separately or together. Proper irradiation of these materials by a light-emitting diode operating at the wavelength of 365 nm provides material alteration demonstrating light-induced optical absorption and photoluminescent properties typical for the corresponding nanoparticles. Thus, an exciton-plasmonic photoinduced nanocomposite is obtained. It is important that here we use the precursors that are different from those usually employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.-B. Li, M.-D. He, L.-Q. Chen, Opt. Express 22, 24734 (2014)

    Article  ADS  Google Scholar 

  2. N. Bityurin, A. Alexandrov, A. Afanasiev, N. Agareva, A. Pikulin, N. Sapogova, L. Soustov, E. Salomatina, E. Gorshkova, N. Tsverova, L. Smirnova, Appl. Phys. A 112, 135–138 (2013)

    Article  ADS  Google Scholar 

  3. N.M. Bityurin, in Fundamentals of Laser-Assisted Micro- and Nanotechnologies, ed. by V.P. Veiko, V.I. Konov (Springer International Publishing, Switzerland, 2014), pp. 293–314

  4. A.K. Bansal, M.T. Sajjad, F. Antolini, L. Stroea, P. Gečys, G. Raciukaitis, P. André, A. Hirzer, V. Schmidt, L. Ortolani, S. Toffanin, S. Allard, U. Scherfh, I.D.W. Samuel, Nanoscale 7, 11163 (2015)

    Article  ADS  Google Scholar 

  5. A. Camposeo, M. Polo, A.A.R. Neves, D. Fragouli, L. Persano, S. Molle, A.M. Laera, E. Piscopiello, V. Resta, A. Athanassiou, R. Cingolani, L. Tapfer, D. Pisignano, J. Mater. Chem. 22, 9787 (2012)

    Article  Google Scholar 

  6. A. Alexandrov, L. Smirnova, N. Yakimovich, N. Sapogova, L. Soustov, A. Kirsanov, N. Bityurin, Appl. Surf. Sci. 248, 181–184 (2005)

    Article  ADS  Google Scholar 

  7. F. Antolini, A. Ghezelbash, C. Eposito, E. Trave, L. Tapfer, B.A. Korgel, Mater. Lett. 60, 1095–1098 (2006)

    Article  Google Scholar 

  8. D. Fragouli, V. Resta, P.P. Pompa, A.M. Laera, G. Caputo, L. Tapfer, R. Cingolani, A. Athanassiou, Nanotechnology 20, 155302 (2009)

    Article  ADS  Google Scholar 

  9. D. Fragouli, P.P. Pompa, M. Kalayva, G. Caputo, L. Tapfer, R. Cingolani, A. Athanassiou, J. Phys. Chem. C 114, 13985–13990 (2010)

    Article  Google Scholar 

  10. B.I. Kharisov, O.V. Kharissova, U.O. Méndez, J. Coord. Chem. 66(21), 3791–3828 (2013)

    Article  Google Scholar 

  11. V. Resta, A.M. Laera, E. Piscopiello, M. Schioppa, L. Tapfer, J. Phys. Chem. C 114(41), 17311–17317 (2010)

    Article  Google Scholar 

  12. V. Resta, A.M. Laera, A. Camposeo, E. Piscopiello, L. Persano, D. Pisignano, L. Tapfer, J. Phys. Chem. C 116(47), 25119–25125 (2012)

    Article  Google Scholar 

  13. A.K. Bansal, F. Antolini, M.T. Sajjad, L. Stroea, R. Mazzaro, S. Ramkumar, K.-J. Kass, S. Allard, U. Schref, I.D.W. Samuel, PCCP 15, 9556–9564 (2014)

    Article  ADS  Google Scholar 

  14. K. Ramasamy, M.A. Malik, M. Helliwell, J. Raftery, P. O’Brien, Chem. Mater. 23, 1471–1481 (2011)

    Article  Google Scholar 

  15. M.-C. Daniel, D. Austruc, Chem. Rev. 104(1), 293 (2004)

    Article  Google Scholar 

  16. G.E. Coates, C. Parkin, J. Chem. Soc., 3220–3226 (1962). http://pubs.rsc.org/en/content/articlelanding/1962/jr/jr9620003220#!divAbstract

  17. M.I. Stockman, Nat. Photon. 2, 327 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. L. A. Smirnova and her co-workers E. Salomatina and I. Glasova from Nizhniy Novgorod State University for fruitful discussions. The authors also thank Russian Scientific Foundation (Grant No. 14-19-01702) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bityurin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bityurin, N., Ermolaev, N., Smirnov, A.A. et al. Plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites. Appl. Phys. A 122, 193 (2016). https://doi.org/10.1007/s00339-016-9706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9706-6

Keywords

Navigation