Skip to main content

Advertisement

Log in

Electrical and switching behavior of quaternary defect chalcopyrite CdInGaSe4 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CdInGaSe4 thin films were prepared by thermal evaporation technique. The amorphous nature of the thin films was confirmed by X-ray analysis. The elemental composition of thin film samples was determined by energy-dispersive X-ray spectrometry revealing the stoichiometric compositions of the material. The temperature and thickness dependences of DC electrical conductivity σ DC were studied, in the temperature and thickness ranges (303–423 K) and (71–198 nm), respectively. The results indicate that the conduction occurs through a thermally activated process having two conduction levels. The switching phenomenon was studied; the obtained I–V curves are typical for memory switch. The value of V th increases with film thicknesses, while it decreases exponentially with increasing temperature. The value of threshold field E th calculated and found to decrease with increasing temperature. The ratio between the threshold activation energy Δɛ th and the electrical activation energy ΔE σ2 was calculated and found to be (\(\frac{{\Delta \varepsilon_{\text{th}} }}{{\Delta E_{\sigma 2} }}\) ≈ 0.93 eV), which can be explained according to thermal model. Values of ΔT breakdown were also calculated and found to increase with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968)

    Article  ADS  Google Scholar 

  2. T. Ohta, S.R. Ovshinsky, Photo-induced Metastability in Amorphous Semiconductors (Wiley-VCH, Berlin, 2003), pp. 310–326

    Book  Google Scholar 

  3. S.R. Ovshinsky, D. Strand, J. Optoelectron. Adv. Mater. 7, 1679–1690 (2005)

    Google Scholar 

  4. T. Lowrey, S. Hudgens, W. Czubatyj, C. Dennison, S. Kostylev, G. Wicker, Mater. Res. Soc. Symp. Proc. 803, 101–112 (2004)

    Google Scholar 

  5. D. Adler, H.K. Henisch, N.F. Mott, Rev. Mod. Phys. 50, 209–220 (1978)

    Article  ADS  Google Scholar 

  6. G.B. Sakr, S.S. Fouad, I.S. Yahia, D.M. Abdel Basset, J. Mater. Sci. 48, 1134–1140 (2013)

    Article  ADS  Google Scholar 

  7. I.S. Yahia, M. Fadel, G.B. Sakr, S.S. Shenouda, J. Alloys Compd. 507, 551–556 (2010)

    Article  Google Scholar 

  8. A.E. Owen, J.M. Robertson, C. Main, J. Non-Cryst. Solids 32, 29 (1979)

    Article  ADS  Google Scholar 

  9. A.D. Pearson, J. Non-Cryst. Solids 2, 1 (1970)

    Article  ADS  Google Scholar 

  10. C. Matthheck, Phys. Stat. Solidi (a) 11, K117 (1971)

    Article  ADS  Google Scholar 

  11. K. Tanaka, S. Iizima, M. Sugi, M. Kikuchi, Solid-State Commun. 8, 75 (1970)

    Article  ADS  Google Scholar 

  12. E. Morquez, P. Villares, R. Jimenez-Garay, J. Non-Cryst. Solids 74, 195 (1985)

    Article  ADS  Google Scholar 

  13. B. Abay, B. Gürbulak, M. Yıldırım, H. Efeoğlu, S. Tüzemen, Y.K. Yoğurtçu, J. Electr. Mater. 25, 1054 (1996)

    Article  ADS  Google Scholar 

  14. H. Fritzche, in Amorphous and Liquid Semiconductors, ed. by J. Tauc (Plenum, London, 1974), p. 313

    Chapter  Google Scholar 

  15. N.F. Mott, Contemp. Phys. 10, 125 (1969)

    Article  ADS  Google Scholar 

  16. N.F. Mott, Philos. Mag. 24, 911 (1971)

    Article  ADS  Google Scholar 

  17. G.C. Vezzoli, J. Peter Walsh, W. Doremus, J. Non-Cryst. Solids 18, 333 (1975)

    Article  ADS  Google Scholar 

  18. H. Hırashima, M. Ide, T. Yoshida, J. Non-Cryst. Solids 86, 327 (1986)

    Article  Google Scholar 

  19. S.M. Sosovska, O.M. Yurchenko, Y.E. Romanyuk, I.D. Olekseyuk, O.V. Parasyuk, J. Alloys Compd. 417, 127 (2006)

    Article  Google Scholar 

  20. Y.M. Andreev, P.P. Geiko, V.V. Badikov, V.L. Panyutin, G.S. Shevyrdyaeva, M.V. Ivashchenko, A.I. Karapyzikov, I.V. Sherstov, Proc. SPIE 5027, 120 (2003)

    Article  ADS  Google Scholar 

  21. L.M. Suslikov, V.Yu. Slivka, M.P. Lisitsa, Solid-State Optical Filters on Gyrotropic Crystals (Interpress Ltd., Kiev, 1998)

    Google Scholar 

  22. Y.O. Derid, S.I. Radautsan, I.M. Tiginyanu, Multicomponent Chalcogenides AIIB2 IIIV4VI (Shtiintsa, Kishinev, 1990)

    Google Scholar 

  23. C.D. Kim, H.M. Jeong, H.G. Kim, W.T. Kim, J. Korean Phys. Soc. 27, 440 (1994)

    Google Scholar 

  24. A.M. Salem, J. Phys. D Appl. Phys. 36, 1030 (2003)

    Article  ADS  Google Scholar 

  25. A.M. Salem, S.H. Moustafa, Fizika A 13, 137 (2004)

    ADS  Google Scholar 

  26. G.F. Mocharnyuk, T.I. Babyuk, O.P. Derid, L.S. Lazarenko, M.M. Markus, S.I. Radautsan, Dokl. Akad. Nauk SSSR 237, 821 (1977)

    ADS  Google Scholar 

  27. A.K. Jonscher, Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  28. S.S. Fouad, S.A. Fayek, S.M. El-Sayed, J. Vacuum 53, 415 (1999)

    Article  Google Scholar 

  29. S.S. Fouad, Phys. B 293, 276 (2001)

    Article  ADS  Google Scholar 

  30. N.F. Mott, E.A. Davis, R.A. Street, Philos. Mag. 32, 961 (1975)

    Article  ADS  Google Scholar 

  31. M.M. Hafiz, M.A. Abd-El Rahim, A.A. Abu-Sehly, Phys. B 252, 207 (1998)

    Article  ADS  Google Scholar 

  32. M.A. Abd-El Rahim, J. Phys. Chem. Solids 60, 29 (1999)

    Article  ADS  Google Scholar 

  33. M.A. Afifi, N.A. Hegab, A.E. Bekheet, E.R. Sharaf, Phys. B 404, 2172 (2009)

    Article  ADS  Google Scholar 

  34. M.A. Afifi, M.M. Abdel-Aziz, H.H. Labib, M. Fadel, E.G. El-Metwally, Vacuum 61, 45 (2001)

    Article  Google Scholar 

  35. R. Mehra, R. Shyam, P.C. Mathur, J. Non-Cryst. Solids 31, 435 (1979)

    Article  ADS  Google Scholar 

  36. M.M. Abdel-Aziz, Appl. Surf. Sci. 253, 2059 (2006)

    Article  ADS  Google Scholar 

  37. S. Prakash, S. Asokan, D.B. Ghare, Semicond. Sci. Technol. 9, 1484 (1994)

    Article  ADS  Google Scholar 

  38. S.R. Ovshinky, H. Fritzsche, IEEE Trans. Electr. Dev. 20, 91 (1973)

    Article  ADS  Google Scholar 

  39. D. Chandasree, R.G. Mohan, S. Asokan, J. Non-Cryst. Solids 357, 165 (2011)

    Article  ADS  Google Scholar 

  40. M. Fadel, K. Sedeek, N.A. Hegab, Vacuum 57, 307 (2000)

    Article  Google Scholar 

  41. T. Kaplan, D. Alder, Appl. Phys. Lett. 19, 419 (1971)

    Article  ADS  Google Scholar 

  42. K. Shimakawa, Y. Inagali, T. Arizumi, Jpn. J. Appl. Phys. 12, 12 (1973)

    Article  Google Scholar 

  43. K. Shimakawa, Y. Inagaki, T. Arizum, Jpn. J. Appl. Phys. 11, 1319 (1972)

    Article  ADS  Google Scholar 

  44. D. Armitage, D.E. Brodie, P.C. Eastman, Can. J. Phys. 49, 1662 (1971)

    Article  ADS  Google Scholar 

  45. K.W. Boer, S.R. Ovshinsky, J. Appl. Phys. 41, 2675 (1970)

    Article  ADS  Google Scholar 

  46. G.B. Sakr, J. Electr. Mater. 41, 2399 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Shakra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakra, A.M., Fadel, M. & Sakr, G.B. Electrical and switching behavior of quaternary defect chalcopyrite CdInGaSe4 thin films. Appl. Phys. A 122, 147 (2016). https://doi.org/10.1007/s00339-016-9676-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9676-8

Keywords

Navigation