Skip to main content
Log in

Reducing light-scattering losses in nanocolloids by increasing average inter-particle distance

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

First, we present a brief review of the theory of the complex effective refractive index of a disordered suspension of nanoparticles that take into account the effects of scattering by the particles. We present numerical examples of the dependence of the scattering losses in nanocolloids with the concentration of non-absorbing and weakly absorbing nanoparticles. Then, we explore a way to reduce scattering losses in colloidal suspensions of non-absorbing nanoparticles. Finally, we provide some physical insight into the dependence of scattering losses with the particle concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jahani Samani, Jacob Zubin, All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016)

    Article  Google Scholar 

  2. Zhao Qian, Zhou Ji, Zhang Fuli, Lippens Didier, Mie resonance-based dielectric metamaterials. Mater. Today 12(12), 60–69 (2009)

    Article  Google Scholar 

  3. S. O’Brien, J.B. Pendry, Photonic band-gap effects and magnetic activity in dielectric composites. J. Phys.: Condens. Matter 14, 4035–4044 (2012)

    Google Scholar 

  4. C.L. Holloway, E.F. Kuester, J. Baker-Jarvis, P. Kabos, A Double Negative (DNG) Composite Medium Composed of Magnetodielectric Spherical Particles Embedded in a Matrix. IEEE Trans. Antennas Propag. 51, 2596–2603 (2003)

    Article  ADS  Google Scholar 

  5. J. Kim, A. Gopinath, Simulation of a metamaterial containing cubic high dielectric resonators. Phys. Rev. B 76, 115126 (2007)

    Article  ADS  Google Scholar 

  6. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, L. Li, Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. Phys. Rev. Lett. 101, 027402 (2008)

    Article  ADS  Google Scholar 

  7. K. Vynck, D. Felbacq, E. Centeno, A.I. Căbuz, D. Cassagne, B. Guizal, All-Dielectric Rod-type metamaterials at optical frequencies. Phys. Rev. Lett. 102, 133901 (2009)

    Article  ADS  Google Scholar 

  8. L. Kang, D. Lippens, Mie resonance based left-handed metamaterial in the visible frequency range. Phys. Rev. B 83, 195125 (2011)

    Article  ADS  Google Scholar 

  9. A.I. Kuznetsov, A.E. Miroshnichenko, Y.H. Fu, J.B. Zhang, B. Luk’yanchuk, Magnetic light. Sci. Rep. 2, 492 (2012)

    Article  ADS  Google Scholar 

  10. D.S. Wiersma, Disordered photonics. Nat. Photonics 7, 188–196 (2013)

    Article  ADS  Google Scholar 

  11. A.B. Golovin, O.D. Lavrentovich, Electrically reconfigurable optical metamaterial based on colloidal dispersion of metal nanorods in dielectric fluid. Appl. Phys. Lett. 95, 254104 (2009)

    Article  ADS  Google Scholar 

  12. S.N. Sheikholeslami, H. Alaeian, A.L. Koh, J.A. Dionne, A metafluid exhibiting strong optical magnetism. Nano Lett. 13, 4137–4141 (2013)

    Article  ADS  Google Scholar 

  13. O.V. Porvatkina, A.A. Tishchenko, M.N. Strikhanov, Local field effects and metamaterials based on colloidal quantum dots. J. Phys: Conf. Ser. 643, 012074 (2015)

    Google Scholar 

  14. A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Engineering and Technology, London UK, 1999)

    Book  Google Scholar 

  15. L. Hespel, S. Mainguy, J.-J. Greffet, Theoretical and experimental investigation of the extinction in a dense distribution of particles: nonlocal effects. J. Opt. Soc. Am 18(12), 3072–3076 (2001)

    Article  ADS  Google Scholar 

  16. A. Ishimaru, Y. Kuga, Attenuation constant of coherent field in a dense distribution of particles. J. Opt. Soc. Am. 72, 1317–1320 (1982)

    Article  ADS  Google Scholar 

  17. A. García-Valenzuela, H. Contreras-Tello, F.L.S. Cuppo, J.A. Olivares, Insights into the dependent scattering contributions to the extinction coefficient in highly scattering suspensions. J. Opt. Soc. Am. A: 30(7), 1328–1334 (2013)

    Article  ADS  Google Scholar 

  18. Y. Huang, E.M. Sevick-Muraca, Validating the assumption to the interference approximation by use of measurements of absorption efficiency and hindered scattering in dense suspensions. Appl. Opt. 43(4), 814–819 (2004)

    Article  ADS  Google Scholar 

  19. Mallet Pierre, C.A. Guérin, Sentenac Anne, Maxwell-Garnett mixing rule in the presence of multiple scattering: derivation and accuracy. Phys. Rev. B 72, 014205 (2005)

    Article  Google Scholar 

  20. L.L. Foldy, The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Phys. Rev. 67, 107–119 (1945)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. M. Lax, Multiple scattering of waves. Rev. Mod. Phys. 23(4), 287–310 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. R.G. Barrera, A. Reyes-Coronado, A. García-Valenzuela, Nonlocal nature of the electrodynamic response of colloidal systems. Phys. Rev. B 75, 184202 (2007)

    Article  ADS  Google Scholar 

  23. L. Tsang, J.A. Kong, Theory of Microwave Remote Sensing, Wiley Series in Remote Sensing (Wiley, New York, 1985)

    Google Scholar 

  24. L. Tsang, J.A. Kong, Scattering of Electromagnetic Waves, Advanced Topics (Wiley, New York, 2001)

    Book  Google Scholar 

  25. R.G. Barrera, C.I. Mendoza, Three-particle correlations in the optical properties of granular composites. Sol. Energy Mater. Sol. Cells 32, 463–476 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from Dirección General de Asuntos del Personal Académico from Universidad Nacional Autónoma de México through grant PAPIIT IN-100615.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto García-Valenzuela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Valenzuela, A., Márquez-Islas, R. & Barrera, R.G. Reducing light-scattering losses in nanocolloids by increasing average inter-particle distance. Appl. Phys. A 123, 84 (2017). https://doi.org/10.1007/s00339-016-0679-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0679-2

Keywords

Navigation