Skip to main content
Log in

Effect of external applied steady magnetic field on the morphology of laser welding joint of 4-mm 2024 aluminum alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Additional external steady magnetic fields were applied to investigate the influence of a steady magnetic field aligned perpendicular to the welding direction during laser beam welding of 2024 aluminum alloy. The flow pattern in the molten pool and the weld seam geometry were significantly changed by the induced Lorentz force distribution in the liquid metal. It revealed that the application of a steady magnetic field to laser beam welding was helpful to the suppression of the characteristic wineglass-shape and the depth-to-width ratio because of the Marangoni convection. The microstructures and component distributions at various laser power and magnetic field intensity were analyzed too. It was indicated that the suppression of the Marangoni convection by Lorentz force was beneficial to accumulation of component and grain coarsening near the fusion line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.S. Miller, L. Zhuang, J. Bottema et al., Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng., A 280(1), 37–49 (2000)

    Article  Google Scholar 

  2. M. Suzuki, A Japanese perspective on the use of aluminium alloys in the automotive sector. Mater. Sci. Forum 519, 11–14 (2006)

    Article  Google Scholar 

  3. N. Nadammal, S.V. Kailas, S. Suwas, A bottom-up approach for optimization of friction stir processing parameters; a study on aluminium 2024-T3 alloy. Mater. Des. 65, 127–138 (2015)

    Article  Google Scholar 

  4. S. Lathabai, B.L. Jarvis, K.J. Barton, Keyhole gas tungsten arc welding of commercially pure zirconium. Sci. Technol. Weld. Join. 13(6), 573–581 (2008)

    Article  Google Scholar 

  5. S. Lathabai, B.L. Jarvis, K.J. Barton, Comparison of keyhole and conventional gas tungsten arc welds in commercially pure titanium. Mater. Sci. Eng., A 299(1–2), 81–93 (2001)

    Article  Google Scholar 

  6. M. Sheikhi, F.M. Ghaini, H. Assadi, Prediction of solidification cracking in pulsed laser welding of 2024 aluminum alloy. Acta Mater. 82, 491–502 (2015)

    Article  Google Scholar 

  7. M. Pastor, H. Zhao, R.P. Martukanitz et al., Porosity, underfill and magnesium loss during continuous wave Nd:YAG laser welding of thin plates of aluminum alloys 5182 and 5754. Weld. J. 78(6), 207s–216s (1999)

    Google Scholar 

  8. B. Chang, C. Allen, J. Blackburn et al., Thermal and fluid flow characteristics and their relationships with porosity in laser welding of AA5083. Phys. Proced. 41, 478–487 (2013)

    Article  ADS  Google Scholar 

  9. M. Windmann, A. Röttger, H. Kügler et al., Removal of oxides and brittle coating constituents at the surface of coated hot-forming 22MnB5 steel for a laser welding process with aluminum alloys. Surf. Coat. Technol. 285, 153–160 (2016)

    Article  Google Scholar 

  10. F. Caiazzo, V. Alfieri, F. Cardaropoli et al., Butt autogenous laser welding of AA 2024 aluminium alloy thin sheets with a Yb:YAG disk laser. Int. J. Adv. Manuf. Technol. 67(9–12), 2157–2169 (2013)

    Article  Google Scholar 

  11. J. Enz, V. Khomenko, S. Riekehr et al., Single-sided laser beam welding of a dissimilar AA2024–AA7050 T-joint. Mater. Des. 76, 110–116 (2015)

    Article  Google Scholar 

  12. A. Matsunawa, Problems and solutions in deep penetration laser welding. Sci. Technol. Weld. Join. 6(6), 351–354 (2001)

    Article  Google Scholar 

  13. D.I.H.D. Radaj, Welding residual stress and distortion: heat effects of welding (Springer, Berlin Heidelberg, 1992), pp. 129–246

    Google Scholar 

  14. H.K. Moffatt, Electromagnetic stirring. Phys. Fluids A Fluids Dyn 3(5), 1336–1343 (1991)

    Article  ADS  Google Scholar 

  15. V.V. Avilov, A. Gumenyuk, M. Lammers et al., PA position full penetration high power laser beam welding of up to 30 mm thick AlMg3 plates using electromagnetic weld pool support. Sci. Technol. Weld. Join. 17(2), 128–133 (2013)

    Article  Google Scholar 

  16. P. Rudolph, Travelling magnetic fields applied to bulk crystal growth from the melt: the step from basic research to industrial scale. J. Cryst. Growth 310(7–9), 1298–1306 (2008)

    Article  ADS  Google Scholar 

  17. M. Bachmann, V. Avilov, A. Gumenyuk et al., Numerical simulation of full-penetration laser beam welding of thick aluminium plates with inductive support. J. Phys. D Appl. Phys. 45(3), 35201–35213 (2011)

    Article  Google Scholar 

  18. V. Avilov, A. Schneider, M. Lammers et al., Electromagnetic control of the weld pool dynamics in partial penetration laser beam welding of aluminium alloys. J. Iron. Steel Res. Int. S1, 233–236 (2012)

    Google Scholar 

  19. M. Bachmann, V. Avilov, A. Gumenyuk et al., About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminium parts. Int. J. Heat Mass Transf. 60(60), 309–321 (2013)

    Article  Google Scholar 

  20. N. Barman, P. Kumar, P. Dutta, Studies on transport phenomena during solidification of an aluminum alloy in the presence of linear electromagnetic stirring. J. Mater. Process. Technol. 209(18), 5912–5923 (2009). doi:10.1016/j.jmatprotec.2009.07.008

    Article  Google Scholar 

  21. M. Sommer, J.P. Weberpals, S. Müller, et al. Advantages of laser beam oscillation for remote welding of aluminum closely above the deep-penetration welding threshold. J. Laser Appl. 29 (2017)

  22. O. Velde, A. Techel, R. Grundmann, Suppression of the development of pores during laser-induced surface dispersion of TiC into aluminium, by means of a static magnetic field. Surf. Coat. Technol. 150(2–3), 170–176 (2002)

    Article  Google Scholar 

  23. M. Gatzen, Z. Tang, F. Vollertsen et al., X-ray investigation of melt flow behavior under magnetic stirring regime in laser beam welding of aluminum. J. Laser Appl. 23(3), 032002 (2011)

    Article  ADS  Google Scholar 

  24. A. Schneider, V. Avilov, A. Gumenyuk et al., Laser beam welding of aluminum alloys under the influence of an electromagnetic field. Phys. Proced. 41(30), 4–11 (2013)

    Article  ADS  Google Scholar 

  25. E.H. Amara, A. Bendib, Modelling of vapour flow in deep penetration laser welding. J. Phys. D Appl. Phys. 35(3), 272–280 (2002)

    Article  ADS  Google Scholar 

  26. E.H. Amara, R. Fabbro, Modelling of gas jet effect on the melt pool movements during deep penetration laser welding. J. Phys. D Appl. Phys. 41(41), 455–457 (2008)

    Google Scholar 

  27. M. Gatzen, Z. Tang, F. Vollertsen, Effect of electromagnetic stirring on the element distribution in laser beam welding of aluminium with filler wire. Phys. Proced. 12(1), 56–65 (2011)

    Article  ADS  Google Scholar 

  28. S. Kou, Y.H. Wang, Three-dimensional convection in laser melted pools. Metall. Trans. A 17(12), 2265–2270 (1986)

    Article  Google Scholar 

  29. M. Gatzen, Z. Tang, CFD-based model for melt flow in laser beam welding of aluminium with coaxial magnetic field. Phys. Proced. 5, 317–326 (2010)

    Article  ADS  Google Scholar 

  30. M.G. Mousavi, M.J.M. Hermans, I.M. Richardson et al., Grain refinement due to grain detachment in electromagnetically stirred AA7020 welds. Sci. Technol. Weld. Join. 8(4), 309–312 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the project from the National Commercial Aircraft Manufacturing Engineering Technology Research Center Innovation Fund of China (SAMC14-JS-15-052), National Science Foundation of China (No. U1637103) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, X., Zhou, J., Sun, W. et al. Effect of external applied steady magnetic field on the morphology of laser welding joint of 4-mm 2024 aluminum alloy. Appl. Phys. A 123, 106 (2017). https://doi.org/10.1007/s00339-016-0671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0671-x

Keywords

Navigation