Skip to main content
Log in

Internal modification of intrinsic and doped silicon using infrared nanosecond laser

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report experimental results of three-dimensional (3D) modification inside intrinsic and doped silicon wafers using laser pulses with 1.55 µm wavelength and 3.5 ns pulse duration. Permanent modification in the form of lines is generated inside silicon by tightly focusing and continuously scanning the laser beam inside samples, without introducing surface damage. Cross sections of these lines are observed after cleaving the samples and are further analyzed after mechanical polishing followed by chemical etching. With the objective lens corrected for spherical aberration, tight focusing inside silicon is achieved and the optimal focal depth is identified. The laser-induced modification has triangular shape and appears in regions prior to the geometrical focus, indicating significant absorption in those regions. Experiments with doped samples show similar modification for doping concentrations (and corresponding initial free carrier densities) in the range of 1013–1016 cm−3. At carrier densities of 1018 cm−3, linear absorption of light becomes significant and the modification is reduced in size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219–225 (2008)

    Article  ADS  Google Scholar 

  2. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996)

    Article  ADS  Google Scholar 

  3. K. Sugioka, Y. Hanada, K. Midorikawa, Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips. Laser Photonics Rev. 4, 386–400 (2010)

    Article  Google Scholar 

  4. Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen et al., Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12, 746–749 (2012)

    Article  Google Scholar 

  5. J. Xu, Y. Liao, H. Zeng, Z. Zhou, H. Sun, J. Song et al., Selective metallization on insulator surfaces with femtosecond laser pulses. Opt. Express 15, 12743–12748 (2007)

    Article  ADS  Google Scholar 

  6. R. Osellame, H.J.W.M. Hoekstra, G. Cerullo, M. Pollnau, Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photonics Rev. 5, 442–463 (2011)

    Article  Google Scholar 

  7. E.G. Gamaly, A.V. Rode, Physics of ultra-short laser interaction with matter: from phonon excitation to ultimate transformations. Prog. Quantum Electron. 37, 215–323 (2013)

    Article  ADS  Google Scholar 

  8. P. Balling, J. Schou, Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films. Rep. Prog. Phys. 76, 036502 (2013)

    Article  ADS  Google Scholar 

  9. X. Yu, Q. Bian, B. Zhao, Z. Chang, P.B. Corkum, S. Lei, Near-infrared femtosecond laser machining initiated by ultraviolet multiphoton ionization. Appl. Phys. Lett. 102, 101111 (2013)

    Article  ADS  Google Scholar 

  10. E.G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther, Davies, laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation. Phys. Rev. B 73, 214101 (2006)

    Article  ADS  Google Scholar 

  11. Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka et al., Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes. Opt. Lett. 38, 187–189 (2013)

    Article  ADS  Google Scholar 

  12. P.C. Verburg, G.R.B.E. Römer, A.J. Huis in 't Veld, Two-photon–induced internal modification of silicon by erbium-doped fiber laser. Opt. Express 22, 21958–21971 (2014)

    Article  ADS  Google Scholar 

  13. M. Mori, Y. Shimotsuma, T. Sei, M. Sakakura, K. Miura, H. Udono, Tailoring thermoelectric properties of nanostructured crystal silicon fabricated by infrared femtosecond laser direct writing. Phys. Status Solidi 7, 1–7 (2015)

    Google Scholar 

  14. Y. Ito, H. Sakashita, R. Suzuki, M. Uewada, K.P. Luong, R. Tanabe, Modification and machining on back surface of a silicon substrate by femtosecond laser pulses at 1552 nm. J. Laser Micro Nanoeng. 9, 98–102 (2014)

    Article  Google Scholar 

  15. D. Grojo, A. Mouskeftaras, P. Delaporte, S. Lei, Limitations to laser machining of silicon using femtosecond micro-Bessel beams in the infrared. J. Appl. Phys. 117, 153105 (2015)

    Article  ADS  Google Scholar 

  16. M.J. Nasse, J.C. Woehl, Realistic modeling of the illumination point spread function in confocal scanning optical microscopy. J. Opt. Soc. Am. A 27, 295–302 (2010)

    Article  ADS  Google Scholar 

  17. X. Yu, Y. Liao, F. He, B. Zeng, Y. Cheng, Z. Xu et al., Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses. J. Appl. Phys. 109, 053114 (2011)

    Article  ADS  Google Scholar 

  18. S. Leyder, D. Grojo, P. Delaporte, W. Marine, M. Sentis, O. Utéza, Non-linear absorption of focused femtosecond laser pulses at 1.3 μm inside silicon: independence on doping concentration. Appl. Surf. Sci. 278, 13–18 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Finance support for the author C. T-H and laser support are provided by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy (DOE) under Grant No. DE-FG02-86ER13491. Partial financial support for this work by the National Science Foundation under Grant No. CMMI-1537846 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuting Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Wang, X., Chanal, M. et al. Internal modification of intrinsic and doped silicon using infrared nanosecond laser. Appl. Phys. A 122, 1001 (2016). https://doi.org/10.1007/s00339-016-0540-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0540-7

Keywords

Navigation