Skip to main content
Log in

Vibrations of fluid-conveying inclined single-walled carbon nanotubes acted upon by a longitudinal magnetic field

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work deals with the influence of the longitudinal magnetic field on vibrations of inclined single-walled carbon nanotubes (SWCNTs) subjected to an inside fluid flow. Using an equivalent continuum structure model for the SWCNT and a plug-like model for the moving inside fluid flow, the nonlocal longitudinal and transverse equations of motion of magnetically affected SWCNTs are obtained in the context of small deformations. By application of the assumed-mode methodology, the displacements are discretized in terms of vibration mode shapes, and by exploiting generalized Newmark-β scheme, their corresponding time-dependent parameters are determined at each time. In the presence of the longitudinal magnetic field, the effects of the small-scale parameter, fluid flow velocity, and inclination angle on both longitudinal and transverse vibrations of SWCNTs are addressed. The obtained results reveal that the longitudinal magnetic field has fairly no effect on the longitudinal dynamic behavior of the nanostructure. However, maximum values of both transverse displacement and nonlocal bending moment of the fluid-conveying SWCNT would reduce as the strength of the magnetic field grows. Such a fact becomes more highlighted for high levels of the fluid flow velocity. The obtained results indicate that the longitudinal magnetic field can be exploited as an efficient way to control transverse vibrations of SWCNTs conveying fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Kalra, S. Garde, G. Hummer, Proc. Natl. Acad. Sci. 100, 10175–10180 (2003)

    Article  ADS  Google Scholar 

  2. F. Zhu, K. Schulten, Biophys. J. 85, 236–244 (2003)

    Article  Google Scholar 

  3. J. Yoon, C.Q. Ru, A. Mioduchowski, Int. J. Solids Struct. 43, 3337–3349 (2006)

    Article  Google Scholar 

  4. N. Khosravian, H. Rafii-Tabar, J. Phys. D Appl. Phys. 40, 7046–7052 (2007)

    Article  ADS  Google Scholar 

  5. L. Wang, Q. Ni, M. Li, Q. Qian, Phys. E 40, 3179–3182 (2008)

    Article  Google Scholar 

  6. W.J. Chang, H.L. Lee, Phys. Lett. A 373, 982–985 (2009)

    Article  ADS  Google Scholar 

  7. Y. Yan, X.Q. He, L.X. Zhang, C.M. Wang, J. Sound Vib. 319, 1003–1018 (2009)

    Article  ADS  Google Scholar 

  8. Y. Yan, W.Q. Wang, L.X. Zhang, Appl. Math. Model. 34, 122–128 (2010)

    Article  MathSciNet  Google Scholar 

  9. R.D. Mindlin, H.F. Tiersten, Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  Google Scholar 

  10. R.D. Mindlin, Exp. Mech. 3, 1–7 (1963)

    Article  Google Scholar 

  11. R.D. Mindlin, Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  Google Scholar 

  12. R.A. Toupin, Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  Google Scholar 

  13. M.E. Gurtin, A.I. Murdoch, Int. J. Solids Struct. 14, 431–440 (1978)

    Article  Google Scholar 

  14. A.I. Murdoch, J. Mech. Phys. Solids 24, 137–146 (1976)

    Article  ADS  Google Scholar 

  15. R.D. Mindlin, N.N. Eshel, Int. J. Solids Struct. 4, 109–124 (1968)

    Article  Google Scholar 

  16. N. Triantafyllidis, E.C. Aifantis, J. Elast. 16, 225–237 (1986)

    Article  MathSciNet  Google Scholar 

  17. E.C. Aifantis, Int. J. Plast 3, 211–247 (1987)

    Article  Google Scholar 

  18. E.C. Eringen, Int. J. Eng. Sci. 5, 191–204 (1967)

    Article  Google Scholar 

  19. A.C. Eringen, Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  Google Scholar 

  20. A.C. Eringen, D.G.B. Edelen, Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  Google Scholar 

  21. Y.Q. Zhang, G.R. Liu, X.Y. Xie, Phys. Rev. B 71, 195404 (2005)

    Article  ADS  Google Scholar 

  22. Q. Wang, J. Appl. Phys. 98, 124301 (2005)

    Article  ADS  Google Scholar 

  23. J.N. Reddy, S.D. Pang, J. Appl. Phys. 103, 023511 (2008)

    Article  ADS  Google Scholar 

  24. K. Kiani, Phys. E 60, 229–245 (2014)

    Article  Google Scholar 

  25. K. Kiani, Appl. Math. Comput. 234, 557–578 (2014)

    MathSciNet  Google Scholar 

  26. K. Kiani, Int. J. Mech. Sci. 68, 16–34 (2013)

    Article  Google Scholar 

  27. Q. Wang, V.K. Varadan, Smart Mater. Struct. 16, 178 (2007)

    Article  ADS  Google Scholar 

  28. Y.G. Hu, K.M. Liew, Q. Wang, X.Q. He, B.I. Yakobson, J. Mech. Phys. Solids 56, 3475–3485 (2008)

    Article  ADS  Google Scholar 

  29. H. Heireche, A. Tounsi, A. Benzair, M. Maachou, E.A. Bedia, Phys. E 40, 2791–2799 (2008)

    Article  Google Scholar 

  30. K. Kiani, Phys. E 45, 86–96 (2012)

    Article  Google Scholar 

  31. K. Kiani, Meccanica 50, 1003–1026 (2015)

    Article  MathSciNet  Google Scholar 

  32. X.Q. He, C.M. Wang, Y. Yan, L.X. Zhang, G.H. Nie, Arch. Appl. Mech. 78, 637–648 (2008)

    Article  ADS  Google Scholar 

  33. K. Kiani, Curr. Appl. Phys. 13, 1651–1660 (2013)

    Article  ADS  Google Scholar 

  34. K. Kiani, Compos. Struct. 107, 610–619 (2014)

    Article  Google Scholar 

  35. L.L. Ke, Y. Xiang, J. Yang, S. Kitiporncha, Comput. Mater. Sci. 47, 409–417 (2009)

    Article  Google Scholar 

  36. J. Yang, L.L. Ke, S. Kitipornchai, Phys. E 42, 1727–1735 (2010)

    Article  Google Scholar 

  37. M. Simsek, Phys. E 43, 182–191 (2010)

    Article  Google Scholar 

  38. K. Kiani, Q. Wang, Eur. J. Mech. A. Solids 31, 179–202 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  39. K. Kiani, Nonlinear Dyn. 76, 1885–1903 (2014)

    Article  MathSciNet  Google Scholar 

  40. K. Kiani, Compos. Struct. 116, 254–272 (2014)

    Article  ADS  Google Scholar 

  41. H.L. Lee, W.J. Chang, J. Appl. Phys. 103, 024302 (2008)

    Article  ADS  Google Scholar 

  42. L. Wang, Phys. E 41, 1835–1840 (2009)

    Article  Google Scholar 

  43. W. Xia, L. Wang, Comp. Mater. Sci. 49, 99–103 (2010)

    Article  Google Scholar 

  44. Y. Zhen, B. Fang, Comput. Mater. Sci. 49, 276–282 (2010)

    Article  Google Scholar 

  45. K. Kiani, Appl. Math. Model. 37, 1836–1850 (2013)

    Article  MathSciNet  Google Scholar 

  46. K. Kiani, Comput. Method Appl. Mech. 276, 691–723 (2014)

    Article  MathSciNet  Google Scholar 

  47. A. Tounsi, H. Heireche, H. Benzair, A.I. Mechab, J. Phys. Condens. Mater. 21, 448001 (2009)

    Article  ADS  Google Scholar 

  48. S. Narendar, S.S. Gupta, S. Gopalakrishnan, Appl. Math. Model. 36, 4529–4538 (2012)

    Article  MathSciNet  Google Scholar 

  49. G.E. Karniadakis, A. Beskok, N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation (Springer, Berlin, 2005)

    MATH  Google Scholar 

  50. J.N. Reddy, Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Kiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiani, K. Vibrations of fluid-conveying inclined single-walled carbon nanotubes acted upon by a longitudinal magnetic field. Appl. Phys. A 122, 1038 (2016). https://doi.org/10.1007/s00339-016-0535-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0535-4

Keywords

Navigation